Beams are structural elements commonly used in structure for construction designs. Usually wood is applied as structural elements and its use is very important because it is a material of renewable source, low density and satisfactory mechanical performance. When the wood surface is not properly treated, the structure can be destroyed not only by environmental conditions but also the attack of insects, compromising the structural design. This research presents the use of a particulate composite material of epoxy resin reinforced with white Portland cement in order to be applied as repair in timber columns. The mechanical performance of this material is essentially numerical, based on the Finite Element Method. The wood used in the simulation was the Eucalyptus grandis. The elastic properties were obtained from the specialist literature in the field of timber structures. The results of numerical simulations in terms of tension and buckling loads, the inclusion of the composite in the damaged regions (for all dimensions of the defects studied) provided buckling load results significantly higher than the buckling load values for the conditions without composite, and near to the values of the buckling loads without defect, highlighting the good performance of the particulate composite material in the repair of timber columns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.