Gravity modes present in γ Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. Mode identification will improve the knowledge of these stars considerably and allow an understanding of the issues with current pulsational models. A frequency analysis followed by a mode identification were done based on the high‐resolution spectroscopic data of two γ Doradus stars: HD 189631 and HD 40745. Extensive spectroscopic data sets are obtained by three instruments: HARPS, FEROS and HERCULES. We obtained 422 spectra for HD 189631 and 248 spectra for HD 40745. The pulsational frequencies were determined by four methods: analysis of the variation in equivalent width, variation in radial velocity, asymmetry of the line profile and the pixel‐by‐pixel frequency analysis. The mode identification was done using the recently developed Fourier Parameter Fit method. Without achieving the same degree of confidence for all results, we report the identification of four pulsational modes in HD 189631: (ℓ= 1; m =+1) at f1= 1.67 d−1; (3; −2) at f2= 1.42 d−1; (2; −2) at f3= 0.07 d−1; and (4; +1) at f4= 1.82 d−1; and two modes in HD 40745: (2; −1) at f1= 0.75 d−1 and (3; −3) at f2= 1.09 d−1. This study provides the first pulsational analysis based on spectroscopy of HD 189631 and HD 40745. We discuss the performance of current methods of analysis and outline the difficulties presented by γ Doradus stars.
We carried out an extensive observational study of the Slowly Pulsating B (SPB) star, HD 25558. The ≈2000 spectra obtained at different observatories, the ground-based and MOST satellite light curves revealed that this object is a double-lined spectroscopic binary with an orbital period of about nine years. The observations do not allow the inference of an orbital solution. We determined the physical parameters of the components, and found that both lie within the SPB instability strip. Accordingly, both show line-profile variations due to stellar pulsations. 11 independent frequencies were identified in the data. All the frequencies were attributed to one of the two components based on pixel-by-pixel variability analysis of
We are undertaking an extensive observational campaign of a number of non-radially pulsating stars using the high-resolution HERCULES spectrograph on the 1.0-m telescope at the Mt John University Observatory. This is part of a large world-wide multi-site campaign to improve modeidentification techniques in non-radially pulsating stars, particularly for g-mode pulsators. This paper outlines our campaign and presents preliminary results for one γ Doradus star, HD 40745, and one β Cephei star, HD 61068. We have used a representative cross-correlation line-profile technique presented by Wright in 2008 to extract line profiles and these have then been analyzed using the FAMIAS package due to Zima published in 2006 to derive a spectroscopic mode identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.