The time delay in fission induced by bombardment of W with 180 MeV 32S, 240-255 MeV 48Ti, and 315-375 MeV 58Ni has been measured by observation of crystal blocking. There is a clear narrowing and a small increase in the minimum yield of the angular dips for fission compared with scaled dips for elastically scattered ions. This is interpreted as a fission delay of about 2 as, only weakly dependent on energy and atomic number. The delay is longer by 1 to 2 orders of magnitude than obtained from standard interpretations of measurements of prescission neutrons and giant-dipole-resonance gamma rays and from calculations of the nuclear dynamics in heavy-ion reactions.
The time delays in fission induced by bombardment of W with 180 MeV 32 S, 240-255 MeV 48 Ti, 330-375 MeV 58 Ni, and 390 MeV 74 Ge have been measured by observation of crystal blocking. Nearly all results are consistent with exponential decay with lifetimes of order 10 −18 s which depend weakly on the atomic number of the composite nucleus. This is inconsistent with the Bohr-Wheeler model of fission from a compound nucleus in statistical equilibrium at each stage in a neutron evaporation cascade and supports a picture of strongly damped quasifission. A simple diffusion model with one-body dissipation reproduces roughly the observed time scale and the exponential decay. It suggests that the outer fission barrier could play a significant role in the observed, very slow decays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.