X-ray photoelectron spectroscopy using synchrotron radiation has been used to investigate the HfO2/SiO2 interface chemistry of high-quality 0.6 and 2.5 nm HfO2/0.6 nm SiO2/Si structures. The high energy resolution (0.15 eV) along with the high brightness level allows us to separate, unambiguously, on both Hf 4f and Si 2p core-level spectra, interfacial Hf–silicate bonds from bulk HfO2 and SiO2 contributions, thus making possible subsequent quantitative treatments and modeling of the interfacial layer structure. Careful assessment of the energy shift of the interfacial components shows that Si-rich Hf silicates are present. The underlying assumption that initial-state contribution dominates the observed Si 2p shift is briefly discussed.
Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 µm and produces a synchrotron spectrum with critical energy Ec = 12.3 ± 2.5 keV and 10 9 photons per shot in the whole spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.