Oxidative burst, a critical antimicrobial mechanism of neutrophils, involves the rapid generation and release of reactive oxygen intermediates (ROIs) by the NADPH oxidase complex. Genetic mutations in an NADPH oxidase subunit, gp91 (also referred to as NOX2), are associated with chronic granulomatous disease (CGD), which is characterized by recurrent and life-threatening microbial infections. To combat such infections, ROIs are produced by neutrophils after stimulation by integrin-dependent adhesion to the ECM in conjunction with stimulation from inflammatory mediators, or microbial components containing pathogenassociated molecular patterns. In this report, we provide genetic evidence that both the Vav family of Rho GTPase guanine nucleotide exchange factors (GEFs) and phospholipase C-γ2 (PLC-γ2) are critical mediators of adhesion-dependent ROI production by neutrophils in mice. We also demonstrated that Vav was critically required for neutrophil-dependent host defense against systemic infection by Staphylococcus aureus and Pseudomonas aeruginosa, 2 common pathogens associated with fatal cases of hospital-acquired pneumonia. We identified a molecular pathway in which Vav GEFs linked integrin-mediated signaling with PLC-γ2 activation, release of intracellular Ca 2+ cations, and generation of diacylglycerol to control assembly of the NADPH oxidase complex and ROI production by neutrophils. Taken together, our data indicate that integrin-dependent signals generated during neutrophil adhesion contribute to the activation of NADPH oxidase by a variety of distinct effector pathways, all of which require Vav.
BackgroundIn response to infection, neutrophils are quickly recruited from the blood into inflamed tissues. The interstitial migration of neutrophils is crucial for the efficient capture and control of rapidly proliferating microbes before microbial growth can overwhelm the host's defenses. However, the molecular mechanisms that regulate interstitial migration are incompletely understood.Methodology/Principal FindingsHere, we use two-photon microscopy (2PM) to study discrete steps of neutrophil responses during subcutaneous infection with bacteria. Our study demonstrates that signals emanating from ITAM-containing receptors mediated by Vav family Rho GEFs control the velocity, but not the directionality, of neutrophil migration towards sites of bacterial infection.Conclusions/SignificanceHere we show that during neutrophil migration towards sites of bacterial infection, signals emanating from ITAM-containing receptors specifically control interstitial neutrophil velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.