N-methyl-D-aspartate (NMDA) receptor activation is involved in the pathogenetic cascades of neurodegenerative disorders including human immunodeficiency virus (HIV) dementia. Memantine, an uncompetitive NMDA receptor antagonist, which has been recently approved for the treatment of Alzheimer's disease, is being discussed as a potential adjunctive therapeutic substance for HIV dementia. We used simian immunodeficiency virus-infected rhesus macaques to assess the effects of memantine on brain dysfunction and brain pathology within 3-5 months after initial infection during early asymptomatic stage of disease. We had shown previously that within this time frame, marked changes were evident in the dopaminergic systems. Memantine was administered two weeks post infection, at peak viremia, in order to prevent early NMDA receptor activation due to immune mediators. We found that memantine prevented onset of dopamine deficits in the brains of SIV-infected macaques, without affecting early brain pathology or peripheral course of infection. Memantine specifically upregulated mRNA and protein expression of the neurotrophic factor brain-derived neurotrophic factor (BDNF), suggesting that the protective effect of memantine on dopamine function may be mechanistically remote from NMDA receptor antagonism. This novel pharmacological action of memantine may also be relevant for other neurodegenerative disorders and supports the involvement of neurotrophic factors in adult brain neuroprotection.
Central dopaminergic (DA) systems are affected during human immunodeficiency virus (HIV) infection. So far, it is believed that they degenerate with progression of HIV disease because deterioration of DA systems is evident in advanced stages of infection. In this manuscript we found that (a) DA levels are increased and DA turnover is decreased in CSF of therapy-naïve HIV patients in asymptomatic infection, (b) DA increase does not modulate the availability of DA transporters and D2-receptors, (c) DA correlates inversely with CD4+ numbers in blood. These findings show activation of central DA systems without development of adaptive responses at DA synapses in asymptomatic HIV infection. It is probable that DA deterioration in advanced stages of HIV infection may derive from increased DA availability in early infection, resulting in DA neurotoxicity. Our findings provide a clue to the synergism between DA medication or drugs of abuse and HIV infection to exacerbate and accelerate HIV neuropsychiatric disease, a central issue in the neurobiology of HIV.
Glutamate‐mediated neurodysfunction in human immunodeficiency virus (HIV) infection has been primarily suggested by in vitro studies. The regulation of glutamatergic neurotransmission in inflammation is a complex interaction between activation of immune mediators and adaptive changes in the functional elements of the glutamatergic synapse. We have used simian immunodeficiency virus (SIV)‐infected macaques to answer the questions (i) whether perturbation of glutamate neurotransmission is evident during progression of immunodeficiency disease and (ii) what are the mechanisms underlying this impairment. Disease progression in SIV‐infected macaques both in the periphery and in the brain was documented by clinical and general pathological examination, plasma and brain viral RNA load, T‐cell analysis and brain histopathology. We report for the first time, disruption of excitatory amino acid transporters (EAATs), the cardinal glutamate clearing system, during SIV infection and a dramatic loss of EAATs associated with development of rapid acquired immunodeficiency syndrome (AIDS). EAATs impairment was correlated with activation status of microglia. Our data support the glutamate hypothesis for the development of HIV dementia and suggest that the pathogenetic mechanism for the neurodysfunction is the impairment of glutamate clearing which occurs in the stage of AIDS and which is associated with activated microglia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.