benzimidazol-2-one), either injected intranigrally or given systemically, also elevated striatal dopamine release and facilitated motor activity, confirming that these effects were caused by blockade of endogenous N/OFQ signaling. The inhibitory role played by endogenous N/OFQ on motor activity was additionally strengthened by the finding that mice lacking the NOP receptor gene outperformed wild-type mice on the rotarod. We conclude that NOP receptors in the substantia nigra pars reticulata, activated by endogenous N/OFQ, drive a physiologically inhibitory control on motor behavior, possibly via modulation of the nigrostriatal dopaminergic pathway.
Metabotropic glutamate receptor type 5 (mGluR5) modulates dopamine and glutamate neurotransmission at central synapses. In this study, we addressed the role of mGluR5 in L-DOPA-induced dyskinesia, a movement disorder that is due to abnormal activation of both dopamine and glutamate receptors in the basal ganglia. A selective and potent mGluR5 antagonist, 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl] pyridine, was tested for its ability to modulate molecular, behavioural and neurochemical correlates of dyskinesia in 6-hydroxydopamine-lesioned rats treated with L-DOPA. The compound significantly attenuated the induction of abnormal involuntary movements (AIMs) by chronic L-DOPA treatment at doses that did not interfere with the rat physiological motor activities. These effects were paralleled by an attenuation of molecular changes that are strongly associated with the dyskinesiogenic action of L-DOPA (i.e. up-regulation of prodynorphin mRNA in striatal neurons). Using in vivo microdialysis, we found a temporal correlation between the expression of L-DOPA-induced AIMs and an increased GABA outflow within the substantia nigra pars reticulata. When co-administered with L-DOPA, 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl] pyridine greatly attenuated both the increase in nigral GABA levels and the expression of AIMs. These data demonstrate that mGluR5 antagonism produces strong anti-dyskinetic effects in an animal model of Parkinson's disease through central inhibition of the molecular and neurochemical underpinnings of L-DOPAinduced dyskinesia.
L-DOPA-induced dyskinesia (LID) in Parkinson's disease has been linked to altered dopamine and glutamate transmission within the basal ganglia. In the present study, we compared compounds targeting specific subtypes of glutamate receptors or calcium channels for their ability to attenuate LID and the associated activation of striatal nuclear signaling and gene expression in the rat. Rats with 6-hydroxydopamine lesions were treated acutely or chronically with L-DOPA in combination with the following selective compounds: antagonists of group I metabotropic glutamate receptors (mGluR), (2-methyl-1,3-thiazol-4-yl) ethynylpyridine (MTEP) for mGluR5 and (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methane sulfonate (EMQMCM) for mGluR1; an agonist of group II mGluR, 1R,4R,5S,6R-2-oxa-4-aminobicyclo[3.; and an L-type calcium channel antagonist, 4-(4-benzofurazanyl)-1,-4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylic acid methyl 1-methylethyl ester (isradipine). Dyskinesia and rotarod performance were monitored during chronic drug treatment. The striatal expression of phospho-extracellular signal-regulated kinase (ERK) 1/2 and mitogen-and stress-activated kinase (MSK)-1, or prodynorphin mRNA was examined after acute or chronic treatment, respectively. In the acute treatment studies, only MTEP and EMQMCM significantly attenuated L-DOPA-induced phospho-ERK1/2 and/or phospho-MSK-1 expression, with MTEP being the most effective (70 -80% reduction). In the chronic experiment, only MTEP significantly attenuated dyskinesia without adverse motor effects, whereas EMQMCM and LY379268 inhibited the L-DOPA-induced improvement in rotarod performance. The NR2B antagonist had positive antiakinetic effects but did not reduce dyskinesia. Only MTEP blocked the up-regulation of prodynorphin mRNA induced by L-DOPA. Among the pharmacological treatments examined, MTEP was most effective in inhibiting LID and the associated molecular alterations. Antagonism of mGluR5 seems to be a promising strategy to reduce dyskinesia in Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.