The thermal fatigue (TF) behaviour of two single crystal nickel-based super-alloys, SRR99 and CMSX-4, is reported. Single edge wedge specimens are rapidly heated by induction heating of the wedge tip to a maximum temperature between 1000‡C and 1175‡C and cooled to 200‡C by forced air. A constant cycle period is employed for all experiments. The strain distribution along the edge of the TF specimens is measured. Changing the induction frequency leads to different strain ranges. CMSX-4 shows crack initiation always on cast microporosities. SRR99 presents an additional oxidation/spalling/re-oxidation mechanism under low strain loading. An “integrated approach” combining TF and TMF (thermo-mechanical fatigue) is proposed. The applied TMF temperature-strain cycle is deduced from the measured TF-cycle. Under this new temperature-strain cycle the crack initiation life and the total life in TMF for SRR99 are compared with the TF results.
The nickel-base alloys IN 617 and HAYNES 230 for welded high-temperature components have been subjected to thermal fatigue (TF) loading. In a series of TF tests in air, single wedge specimens were induction heated and compressed-air cooled at the leading edge for various temperature cycles between 200 ЊC and either 850 ЊC, 950 ЊC, or 1050 ЊC. The test rigs permitted simultaneous measurements of temperature and total strain along the edge of specimen during TF cycling. Both materials have been tested in conditions relevant for hot path components in the gas turbines, e.g., ''as delivered,'' ''welded,'' and ''welded ϩ notched''. Under identical temperature cycles and thermal gradients, HAYNES 230 showed a higher TF strength than IN 617 in the as-delivered condition. It is suggested that this advantage of HAYNES 230 is primarily related to its lower value of the relevant combination of properties of this alloy: coefficient of thermal expansion, thermal conductivity, elastic modulus, ultimate tensile strength, taken at maximal operating temperature. In addition, the advantage of the HAYNES 230 is described by a lower plastic strain, which is induced at the wedge region during TF loading. Moreover, microstructural details of crack initiation, crack propagation, and reactions with the gaseous environment play an important role. Both alloys investigated in the present work showed plastic deformation with a maximum in the central zone of the wedge tip. In this zone, slip bands and grain distortion occurred, whereas both ends of the wedge tip were free of visible plastic deformation. The TF cycles led to multiple transgranular crack initiation and propagation. In welded specimens of IN 617 and HAYNES 230, cracks appeared first in the center of the weld. The susceptibility of welds to TF cracking depends considerably on the weld filler and the surface quality. It was shown for HAYNES 230 that a mismatched weld could reduce the TF life to less than 50 pct of non-welded specimens. The lower TF-fatigue strength of the welded specimens can be explained by the difficulty of the cast alloy in the welded zone to accommodate the repeated thermal shocks by plastic deformation. Notches introduced in the heat-affected zone (depth about 0.1 mm) reduced the TF life of both alloys by a factor as high as 4. The thermal fatigue strength of the welded material can almost reach the values of the base alloy provided the use of matching electrodes, post-weld heat treatment, and grinding off the weld beads is carefully executed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.