In this paper, we investigate theoretically the quantum state transfer in a laser driven hybrid optomechanical cavity with two Duffing-like anharmonic movable end mirrors containing an ensemble of identical two-level trapped atoms. The quantum state transfer from the Bogoliubov modes of the two anharmonic oscillators to the atomic mode results in the atomic quadrature squeezing beyond the standard quantum limit of 3 dB which can be controlled by both the optomechanical and atom-field coupling strengths. Interestingly, the generated atomic squeezing can be made robust against the noise sources by means of the Duffing anharmonicity. Moreover, the results reveal that the presence of the Duffing anharmonicity provides the possibility of transferring strongly squeezed states between the two mechanical oscillators in a short operating time and with a high fidelity.
In this paper, we study theoretically a hybrid optomechanical system consisting of a degenerate optical parametric amplifier inside a driven optical cavity with a moving end mirror which is modeled as a stiffening Duffing-like anharmonic quantum mechanical oscillator. By providing analytical expressions for the critical values of the system parameters corresponding to the emergence of the multistability behavior in the steady-state response of the system, we show that the stiffening mechanical Duffing anharmonicity reduces the width of the multistability region while the optical parametric nonlinearity can be exploited to drive the system toward the multistability region. We also show that for appropriate values of the mechanical anharmonicity strength the steady-state mechanical squeezing and the ground-state cooling of the mechanical resonator can be achieved. Moreover, we find that the presence of the nonlinear gain medium can lead to the improvement of the mechanical anharmonicity-induced cooling of the mechanical motion, as well as to the mechanical squeezing beyond the standard quantum limit of 3 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.