The antioxidant activities of trans-resveratrol (trans-3,5,4′-trihydroxystilbene) and trans-piceid (trans-5,4′-dihydroxystilbene-3-O-β-D-glucopyranoside), its more widespread glycosilate derivative, have been compared measuring their inhibitory action on peroxidation of linoleic acid (LA) and the radical scavenging ability towards different free radicals (such as DPPH) and radical initiators. It has been found that the two stilbenes have similar antioxidant capacity, while the comparison with BHT (2,6-di-tert-butyl-4-methylphenol) and α-tocopherol (vitamin E, vit. E), taken as reference, points out a slower but prolonged protective action against lipid peroxidation. Furthermore, piceid appears more efficacious than resveratrol as a consequence of the reaction of the latter with its radical form. The DSC profiles of phosphatidylcholine liposomes of various chain lengths, and EPR measurements of spin labelled liposomes demonstrated that the susceptible hydroxyl group of these compounds are located in the lipid region of the bilayer close to the double bonds of polyunsatured fatty acids, making these stilbenes particularly suitable for the prevention and control of the lipid peroxidation of the membranes.
A new spectrophotometric enzymatic method for the determination of total phenol content in tea and wine has been developed. The method is based on the peroxidase-catalyzed oxidation, by hydrogen peroxide, of phenols to phenoxyl radicals, which can react with aromatic substrates to form intensely colored adducts. In comparison with the widely used Folin-Ciocalteu method, this method appears to be more specific and more rapid and as a whole is not affected by the common interfering substances such as ascorbate, citrate, and sulfite. Numerous samples of teas and wines were analyzed by using the new method, and the results compared with those obtained by using the Folin and scavenging of DPPH methods. The differences of the total phenols content found by applying the three methods are discussed in terms of the different specificities of the analytical basis.
Propofol (2,6-diisopropylphenol), some substituted phenols (2,6-dimethylphenol and 2,6-ditertbutylphenol) and their 4-nitrosoderivatives have been compared for their scavenging ability towards 1,1-diphenyl-2-picrylhydrazyl and for their inhibitory action on lipid peroxidation. These products were also compared to the classical antioxidants butylated hydroxytoluene and butylated hydroxyanisole. When measuring the reactivity of the various phenolic derivatives with 1,1-diphenyl-2-picrylhydrazyl the following order of effectiveness was observed: butylated hydroxyanisole > propofol > 2,6-dimethylphenol > 2,6-di-tertbutylphenol > butylated hydroxytoluene. In cumene hydroperoxide-dependent microsomal lipid peroxidation, propofol acts as the most effective antioxidant, while butylated hydroxyanisole, 2,6-di-tertbutylphenol and butylated hydroxytoluene exhibit a rather similar effect, although lower than propofol. In the iron/ascorbate-dependent lipid peroxidation propofol, at concentrations higher than 10 microM, exhibits antioxidant properties comparable to those of butylated hydroxytoluene and butylated hydroxyanisole, 2,6-Dimethylphenol is scarcely effective in both lipoperoxidative systems. The antioxidant properties of the various molecules depend on their hydrophobic characteristics and on the steric and electronic effects of their substituents. However, the introduction of the nitroso group in the 4-position almost completely removes the antioxidant properties of the examined compounds. The nitrosation of the aromatic ring of antioxidant molecules and the consequent loss of antioxidant capacity can be considered a condition potentially occurring in vivo since nitric oxide and its derivatives are continuously formed in biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.