Electrically conducting polyaniline/multiwalled carbon nanotubes (PANi/MWCNTs) nanocomposites were successfully synthesized via chemical oxidative polymerization. For this purpose, PANi was first prepared in an aqueous acidic medium, hydrochloric acid (HCl), at various temperatures to determine the proper polymerization temperature and to prepare the polymer with the highest electrical conductivity. For nanocomposite preparation, the polymerization of aniline (ANi) was carried out in the presence of various amounts of MWCNTs dispersed using a proper surfactant. The effect of HCl and MWCNT contents on the conductivity of the resultant composites was investigated. The results showed that the conductivity was monotonically increased with increasing the MWCNT and HCl levels. In addition, the effect of anionic and cationic surfactant type, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), on the conductivity and morphology of the resulting nanocomposites, was studied. Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, two- and four-point resistivity measuring methods, and field emission scanning electron microscopy (FESEM) were used to characterize the neat PANi and PANi/MWCNT nanocomposites. The conductivity variation of the conducting polymers versus elapsed time was investigated to determine the intensity and dominant aging mechanism. Electromagnetic shielding properties of the conducting nanocomposites were also studied. The results indicated that the nanocomposite with the highest MWCNTs level absorbed more than 83% of the incident electromagnetic waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.