In this work, ab initio density functional theory calculations were performed in order to study the structural and electronic properties of halogens (X = fluorine, chlorine, bromine or iodine) that were deposited on both sides of graphene single layers (X-graphene). The adsorption of these atoms on only one side of the layer with hydrogen atoms adsorbed on the other was also considered (H,X-graphene). The results indicate that the F-C bond in the F-graphene system causes an sp(2) to sp(3) transition of the carbon orbitals, and similar effects seem to occur in the H,X-graphene systems. For the other cases, two configurations are found: bonded (B) and non-bonded (NB). For the B configuration, the structural arrangement of the atoms was similar to F-graphene and H-graphene (graphane), although the electronic structures present some differences. In the NB configuration, the interaction between the adsorbed atoms and the graphene layer seems to be essentially of the van der Waals type. In these cases, the original shape of the graphene layer presents only small deviations from the pristine form and the adsorbed atoms reach equilibrium far from the sheet. The F-graphene structure has a direct bandgap of approximately 3.16 eV at the Γ point, which is a value that is close to the value of 3.50 eV that was found for graphane. The Cl-graphene (B configuration), H,F-graphene and H,Cl-graphene systems have smaller bandgap values. All of the other systems present metallic behaviours. Energy calculations indicate the possible stability of these X-graphene layers, although some considerations about the possibility of spontaneous formation have to be taken into account.
Two-dimensional (2D) binary XBi compounds, where X belongs to group III elements (B, Al, Ga, and In), in a buckled honeycomb structure may originate sizable gap Z2 topological insulators (TIs). These are characterized by exhibiting single band inversion at the Γ point as well as nontrivial edge states in their corresponding nanoribbons. By using first-principles calculations, we demonstrate that hydrogenation of XBi single layers leads to distinct and stable crystal structures, which can preserve their topological insulating properties. Moreover, hydrogenation opens a band gap in this new class of 2D Z2 TIs, with distinct intensities, exhibiting an interesting electronic behavior for viable room-temperature applications of these 2D materials. The nature of the global band gap (direct or indirect) and topological insulating properties depend on the X element type and spatial configuration of the sheet, as well as the applied strain. Our results indicate that the geometric configuration can be crucial for preserving totally the topological characteristics of the hydrogenated sheets. We identify sizable band inversions in the band structure for the relaxed hydrogenated GaBi and InBi in their chairlike configurations and for hydrogenated BBi and AlBi under strain. Based on these findings, hydrogenation gives rise to a flexible chemical tunability and can preserve the band topology of the pristine XBi phases
We have investigated, using first-principles calculations, the energetic stability and structural properties of antisites, vacancies and substitutional carbon defects in a boron nitride monolayer. We have found that the incorporation of a carbon atom substituting for one boron atom, in an N-rich growth condition, or a nitrogen atom, in a B-rich medium, lowers the formation energy, as compared to antisites and vacancy defects. We also verify that defects, inducing an excess of nitrogen or boron, such as N(B) and B(N), are more stable in its reverse atmosphere, i.e. N(B) is more stable in a B-rich growth medium, while B(N) is more stable in a N-rich condition. In addition we have found that the formation energy of a C(N), in a N-rich medium, and C(B) in a B-rich medium, present formation energies comparable to those of the vacancies, V(N) and V(B), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.