The quest for alternative methods is driven by the need to provide expertise in real time in biological fields such as medicine, pathogenic bacteria and viruses identification, food protection, and quality control. Polymerase Chain Reaction (PCR) and Enzyme Linked Immunosorbent Assay (ELISA) are examples of traditional methods that have some limitations and lengthy procedures. Biosensors are the most appealing option because they provide easy, dependable, fast, and selective detection systems compared to conventional methods. This review provides an overview of electrochemical genosensor based biosensor diagnostic system for infectious diseases detection as well as their applications, demonstrating their utility as a fast and responsive tool for detecting pathogenic bacteria, viruses, GMOs, and human diseases.
The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single‐stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high‐end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row. The output from bioinformatics tools resulted in 100% of similarities between our virus ssDNA probe and HPV complete genome in the databases. The cross‐validation between HPV genome and our designed virus ssDNA provided high specificity and selectivity during screening methods compared with Pap smear. The DNA probe for HPV 18, 5′ COOH‐GAT CCA GAA GGT ACA GAC GGG GAG GGC ACG 3′, while 5′COOH‐GGG CGC TGT GCA GTG TGT TGG AGA CCC CGA3′ as DNA probe for HPV 58 designed with 66.77% guanine (G) and cytosine (C) content for both. Our virus ssDNA probe for the HPV biosensor promises high sensitivity, specificity, selectivity, repeatability, low fluid consumption, and will be useful in mini‐size diagnostic devices for cervical cancer detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.