Two different initial microstructures, martensitic and lamellar, were developed in a Ti-6Al-4V alloy to examine their effect on the high temperature mechanical properties and superplasticity after high-pressure torsion (HPT). Significant grain refinement was achieved in both conditions with grain sizes after HPT processing of ~30 and ~40 nm, respectively. The nanocrystalline alloy in both conditions was subjected to mechanical testing at 923-1073 K with strain rates in the range from 10-3 to 10-1 s-1. The martensitic and lamellar alloys exhibited excellent ductility at these high temperatures including superplastic elongations at 973 K with maximum elongations of 815% and 690%, respectively. The fcc phase was stable at elevated temperatures in the martensitic alloy and the results suggests the fcc phase may contribute to the superior superplastic properties of the martensitic alloy.
The shear deformation behaviour of an extruded Mg-4Zn-0.5Ca alloy was studied using shear punch testing at room temperature. The extrusion process effectively refined the microstructure, leading to a grain size of 4.6 ± 1.4 μm.Contributions of different strengthening mechanisms to the room temperature shear yield stress, and overall flow stress of the material, were calculated. These mechanisms include dislocation strengthening, grain boundary strengthening, solid solution hardening and strengthening resulting from second-phase particles. Grain boundary strengthening and solid solution hardening made significant contributions to the overall strength of the material, while the contributions of second-phase particles and dislocations were trivial. The observed differences between calculated and experimental strength values were discussed based on the textural softening of the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.