Serving as the progenitors of electromagnetic and gravitational wave transients, massive stars have received renewed interest in recent years. However, many aspects of their birth and evolution remain opaque, particularly in the context of binary interactions. The centre of our galaxy hosts a rich cohort of very massive stars, which appear to play a prominent role in the ecology of the region. In this paper we investigate the binary properties of the Arches cluster, which is thought to host a large number of very massive stars. A combination of multi-epoch near-IR spectroscopy and photometry was utilised to identify binaries. 13 from 36 cluster members meet our criteria to be classed as RV variable. Combining the spectroscopic data with archival radio and X-ray observations -to detect colliding wind systems -provides a lower limit to the binary fraction of ∼ 43%; increasing to 50% for the O-type hypergiants and WNLha. Dynamical and evolutionary masses reveal the primaries to be uniformly massive ( 50𝑀 ). Where available, orbital analysis reveals a number of short period, highly eccentric binaries, which appear to be pre-interaction systems. Such systems are X-ray luminous, with 80% above an empirical bound of (𝐿 x /𝐿 bol ) ∼ 10 −7 and their orbital configurations suggest formation and evolution via a single star channel; however, we cannot exclude a binary formation channel for a subset. Qualitative comparison to surveys of lower mass OB-type stars confirms that the trend to an extreme binary fraction (≥ 60%) extends to the most massive stars currently forming in the local Universe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.