The three-body breakup 6 He→ 4 Heϩnϩn is studied experimentally, using a secondary 6 He ion beam of 240 MeV/nucleon incident on carbon and lead targets. Integrated cross sections for one-and two-neutron knockout and differential cross sections d/dE* and d/d for inelastic nuclear or electromagnetic excitations into the 6 He continuum are presented. The E1-strength distribution is deduced from electromagnetic cross sections and is found to exhaust (10Ϯ2)% of the energy-weighted Thomas-Reiche-Kuhn sum rule or (40Ϯ8)% of the cluster sum rule for excitation energies below 5 MeV. Both the energy-weighted and non-energy-weighted dipole cluster sum rules are almost exhausted integrating the strength up to 10 MeV, a fact from which the root-mean-square distance between the ␣ core and the two valence neutrons of r ␣Ϫ2n ϭ(3.36Ϯ0.39) fm is derived. The known I ϭ2 ϩ ͑1.80 MeV͒ resonance in 6 He is observed in nuclear inelastic scattering; model-dependent values of the quadrupole deformation parameter ␦ 2 ϭ(1.7Ϯ0.3) fm or B(E2,0 ϩ →2 ϩ )ϭ(3.2Ϯ0.6)e 2 fm 4 are derived. No clear signature could be obtained for predicted higherlying 2 ϩ resonances, but low-lying continuum strength of multipolarity other than dipole, likely of monopole and quadrupole multipolarity, is indicated by the data. Two-body correlations in the decaying 4 Heϩnϩn system are investigated. The astrophysical relevance of the data with regard to the two-neutron capture process 4 He(2n,␥) 6 He is briefly discussed.
Spin crossover (SCO) complexes possess a bistable spin state that reacts sensitively to changes in temperature or excitation with light. These effects have been well investigated in solids and solutions, while technological applications require the immobilization and contacting of the molecules at surfaces, which often results in the suppression of the SCO. We report on the thermal and light-induced SCO of [Fe(bpz)2phen] molecules in direct contact with a highly oriented pyrolytic graphite surface. We are able to switch on the magnetic moment of the molecules by illumination with green light at T = 6 K, and off by increasing the temperature to 65 K. The light-induced switching process is highly efficient leading to a complete spin conversion from the low-spin to the high-spin state within a submonolayer of molecules. [Fe(bpz)2phen] complexes immobilized on weakly interacting graphite substrates are thus promising candidates to realize the vision of an optically controlled molecular logic unit for spintronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.