We present an overview of the first data release (DR1) and first-look science from the Green Bank Ammonia Survey (GAS). GAS is a Large Program at the Green Bank Telescope to map all Gould Belt star-forming regions with A V 7 mag visible from the northern hemisphere in emission from NH 3 and other key molecular tracers. This first release includes the data for four regions in Gould Belt clouds: B18 in Taurus, NGC 1333 in Perseus, L1688 in Ophiuchus, and Orion A North in Orion. We compare the NH 3 emission to dust continuum emission from Herschel, and find that the two tracers correspond closely. NH 3 is present in over 60 % of lines-of-sight with A V 7 mag in three of the four DR1 regions, in agreement with expectations from previous observations. The sole exception is B18, where NH 3 is detected toward ∼ 40 % of lines-of-sight with A V 7 mag. Moreover, we find that the NH 3 emission is generally extended beyond the typical 0.1 pc length scales of dense cores. We produce maps of the gas kinematics, temperature, and NH 3 column densities through forward modeling of the hyperfine structure of the NH 3 (1,1) and (2,2) lines. We show that the NH 3 velocity dispersion, σ v , and gas kinetic temperature, T K , vary systematically between the regions included in this release, with an increase in both the mean value and spread of σ v and T K with increasing star formation activity. The data presented in this paper are publicly available.
We use gas temperature and velocity dispersion data from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between selfgravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure confined.
Context. Magnetic fields are proposed to play an important role in the formation and support of self-gravitating clouds and the formation and evolution of protostars in such clouds. Aims. We attempt to understand more precisely how the Pipe nebula is affected by the magnetic field. Methods. We use R-band linear polarimetry collected for about 12 000 stars in 46 fields with lines of sight toward the Pipe nebula to investigate the properties of the polarization across this dark cloud complex.Results. Mean polarization vectors show that the magnetic field is locally perpendicular to the large filamentary structure of the Pipe nebula (the "stem"), indicating that the global collapse may have been driven by ambipolar diffusion. The polarization properties clearly change along the Pipe nebula. The northwestern end of the nebula (B59 region) is found to have a low degree of polarization and high dispersion in polarization position angle, while at the other extreme of the cloud (the "bowl") we found mean degrees of polarization as high as ≈15% and a low dispersion in polarization position angle. The plane of the sky magnetic field strength was estimated to vary from about 17 μG in the B59 region to about 65 μG in the bowl. Conclusions. We propose that three distinct regions exist, which may be related to different evolutionary stages of the cloud; this idea is supported by both the polarization properties across the Pipe and the estimated mass-to-flux ratio that varies between approximately super-critical toward the B59 region and sub-critical inside the bowl. The three regions that we identify are: the B59 region, which is currently forming stars; the stem, which appears to be at an earlier stage of star formation where material has been through a collapsing phase but not yet given birth to stars; and the bowl, which represents the earliest stage of the cloud in which the collapsing phase and cloud fragmentation has already started.
Aims. We aim to investigate the polarization properties of a starless core in an early evolutionary stage. Linear polarization data reveal the properties of the dust grains in the distinct phases of the interstellar medium. Our goal is to investigate how the polarization degree and angle correlate with the cloud and core gas. Methods. We use optical, near infrared, and submillimeter polarization observations on the starless object Pipe-109 in the Pipe nebula. Our data cover a physical scale range of 0.08 to 0.4 pc, comprising the dense gas, envelope, and the surrounding cloud. Results. The cloud polarization is well traced by the optical data. The near infrared polarization is produced by a mixed population of grains from the core border and the cloud gas. The optical and near infrared polarization toward the cloud reaches the maximum possible value and saturates with respect to the visual extinction. The core polarization is predominantly traced by the submillimeter data and has a steep decrease with respect to the visual extinction. Modeling of the submillimeter polarization indicates a magnetic field main direction projected onto the plane-of-sky and loss of grain alignment for densities higher than 6 × 10 4 cm −3 (or A V > 30 mag). Conclusions. The object is immersed in a magnetized medium with a very ordered magnetic field. The absence of internal source of radiation significantly affects the polarization efficiencies in the core, creating a polarization hole at the center of the starless core. This result supports the theory of dust grain alignment via radiative torques
We use R-band CCD linear polarimetry collected for about 12 000 background field stars in 46 fields of view toward the Pipe nebula to investigate the properties of the polarization across this dark cloud. Based on archival 2MASS data we estimate that the surveyed areas present total visual extinctions in the range 0. m 6 ≤ A V ≤ 4. m 6. While the observed polarizations show a well ordered large scale pattern, with polarization vectors almost perpendicularly aligned to the cloud's long axis, at core scales one see details that are characteristics of each core. Although many observed stars present degree of polarization which are unusual for the common interstellar medium, our analysis suggests that the dust grains constituting the diffuse parts of the Pipe nebula seem to have the same properties as the normal Galactic interstellar medium. Estimates of the second-order structure function of the polarization angles suggest that most of the Pipe nebula is magnetically dominated and that turbulence is sub-Alvénic. The Pipe nebula is certainly an interesting region where to investigate the processes prevailing during the initial phases of low mass stellar formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.