Pirellula sp. strain 1 (''Rhodopirellula baltica'') is a marine representative of the globally distributed and environmentally important bacterial order Planctomycetales. Here we report the complete genome sequence of a member of this independent phylum. With 7.145 megabases, Pirellula sp. strain 1 has the largest circular bacterial genome sequenced so far. The presence of all genes required for heterolactic acid fermentation, key genes for the interconversion of C1 compounds, and 110 sulfatases were unexpected for this aerobic heterotrophic isolate. Although Pirellula sp. strain 1 has a proteinaceous cell wall, remnants of genes for peptidoglycan synthesis were found. Genes for lipid A biosynthesis and homologues to the flagellar L-and P-ring protein indicate a former Gram-negative type of cell wall. Phylogenetic analysis of all relevant markers clearly affiliates the Planctomycetales to the domain Bacteria as a distinct phylum, but a deepest branching is not supported by our analyses. P irellula sp. strain 1, which is in the process of being validly described as ''Rhodopirellula baltica,'' is a marine, aerobic, heterotrophic representative of the globally distributed and environmentally important bacterial order Planctomycetales. Molecular microbial ecology studies repeatedly provided evidence that planctomycetes are abundant in terrestrial and marine habitats (1-5). For example, they inhabit phytodetrital macroaggregates in marine environments (6) and include one of the organisms known to derive energy from the anaerobic oxidation of ammonia (7). They catalyze important transformations in global carbon and nitrogen cycles. By their mineralization of marine snow particles planctomycetes have a profound impact on global biogeochemistry and climate by affecting exchange processes between the geosphere and atmosphere (8). From a phylogenetic perspective the order Planctomycetales forms an independent, monophyletic phylum of the domain Bacteria (9). It has recently been suggested to be the deepest branching bacterial phylum (10). Planctomycetes are unique in many other respects. Their cell walls do not contain peptidoglycan, the main structural polymer of most members of the domain Bacteria. They show a unique cell compartmentalization in which a single membrane separates a peripheral ribosome-free paryphoplasm from the inner riboplasm (pirellulosome). Within the riboplasm, all planctomycetes contain a condensed fibrillar nucleoid, which in Gemmata spp. is surrounded by a additional double membrane (11). These structures, together with an unusual fatty acid composition of the phospholipids, resemble eukaryotes rather than a representative of the bacterial domain (12).Characteristic for Planctomycetales are the polar cell organization and a life cycle with a polar, yeast-like cell division. Cells attach to surfaces at their vegetative poles by means of an excreted holdfast substance or stalks (13). Further unusual features are the crateriform structures on the cell surface of all planctomycetes (14). They appear as...
The seasonal variations in community structure and cell morphology of pelagic procaryotes from a high mountain lake (Gossenköllesee, Austria) were studied by in situ hybridization with rRNA-targeted fluorescently labeled oligonucleotide probes (FISH) and image-analyzed microscopy. Compositional changes and biomass fluctuations within the assemblage were observed both in summer and beneath the winter ice cover and are discussed in the context of physicochemical and biotic parameters. Proteobacteria of the beta subclass (beta-proteobacteria) formed a dominant fraction of the bacterioplankton (annual mean, 24% of the total counts), whereas alpha-proteobacteria were of similar relative importance only during spring (mean, 11%). Bacteria of theCytophaga-Flavobacterium cluster, although less abundant, constituted the largest fraction of the filamentous morphotypes during most of the year, thus contributing significantly to the total microbial biomass. Successive peaks of threadlike and rod-shaped archaea were observed during autumn thermal mixing and the period of ice cover formation, respectively. A set of oligonucleotide probes targeted to single phylotypes was constructed from 16S rRNA-encoding gene clone sequences. Three distinct populations of uncultivated microbes, affiliated with the alpha- and beta-proteobacteria, were subsequently monitored by FISH. About one-quarter of all of the beta-proteobacteria (range, 6 to 53%) could be assigned to only two phylotypes. The bacterial populations studied were annually recurrent, seasonally variable, and vertically stratified, except during the periods of lake overturn. Their variability clearly exceeded the fluctuations of the total microbial assemblage, suggesting that the apparent stability of total bacterioplankton abundances may mask highly dynamic community fluctuations.
The bacterial community structure in the winter cover and pelagic zone of a high mountain lake was analyzed by in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes. Cells fixed on membrane filters were hybridized with a probe specific for the domain Bacteria as well as with probes for the alpha, beta, and gamma subclasses of the class Proteobacteria and the Cytophaga-Flavobacterium group. The fraction of bacteria detectable after hybridization with the bacterial probe EUB ranged from 40 to 81% of 4(prm1),6-diamidino-2-phenylindole (DAPI) counts. The bacterial assemblage varied considerably between and within different habitats (snow, slush, and lake water) but was in most cases dominated by members of the beta subclass (6.5 to 116% of bacteria detectable with probe EUB). The sum of bacteria hybridizing with group-specific probes was usually lower than the fraction detectable with probe EUB. Image analysis was used to characterize morphology and the size-specific biomass distribution of bacterial assemblages, which clearly separated the three habitats. Although the measured secondary production parameters and the fraction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride-reducing bacteria varied by more than an order of magnitude in the different slush and pelagic layers, detectability with the fluorescent probe EUB was constantly high. Physiological strategies of bacteria under nutrient limitation and at low temperatures are discussed in the context of the ribosome content of single cells. This study confirms the suitability of fluorescently labeled rRNA-targeted probes for the characterization of bacterial population structures even in oligotrophic habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.