Weak and strong convergence theorems are proved in Hilbert spaces for new classes of multivalued demicontractive-type and hemicontractive-type mappings which are related to the class of multivalued pseudocontractive-type mappings studied by Isiogugu (Fixed Point Theory Appl. 2013:61, 2013). Thus our results extend and improve several corresponding results in the contemporary literature. MSC: 47H10; 54H25
We introduce a new algorithm (horizontal algorithm) in a real Hilbert space, for approximating a common fixed point of a finite family of mappings, without imposing on the finite family of the control sequences ςnin=1∞i=1N, the condition that ∑i=1Nςni=1, for each n≥1. Furthermore, under appropriate conditions, the horizontal algorithm converges both weakly and strongly to a common fixed point of a finite family of type-one demicontractive mappings. It is also applied to obtain some new algorithms for approximating a common solution of an equilibrium problem and the fixed point problem for a finite family of mappings. Our work is a contribution to ongoing research on iteration schemes for approximating a common solution of fixed point problems of a finite family of mappings and equilibrium problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.