Resistive temperature sensors on two different commercially available uncoated paper substrates have been manufactured using inkjet printing of silver nanoparticles. Their dedication is to be integrated in lightweight materials made from natural fibre-reinforced biopolymers for condition monitoring during the manufacturing process and beyond. The printed sensors have nominal resistances of a few hundred Ohms and kOhms, depending on the roughness and porosity of the respective paper substrate. Compared to previous research in this field, the manufactured sensors were fully characterised and extensively tested as part of this work. Furthermore, the influence of the individual paper characteristics on the electrical properties was studied using white-light interferometry and SEM imaging. All sensors show a good linear temperature dependence, minimal hysteresis and low baseline drift in the temperature range of interest (20 °C-80 °C). In an extended temperature range (−25 °C to 150 °C) and exposed to humidity (0%rH-80%rH) the accuracy and overall quality of the sensors decrease expectedly, still the temperature sensing principle can be exploited depending on the individual application and precision requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.