The performance of a frequency-modulated continuous-wave (FMCW) semiconductor laser radar has been examined. Frequency modulation (linear chirp) has been studied experimentally in detail. To create a linear frequency sweep, we modified the modulating function according to the measured frequency response of the laser, using an arbitrary function generator. The measurements indicate the possibility of achieving a spectral width of the signal peak that is transform limited rather than limited by the frequency modulation response of the laser, which permits the use of a narrow detection bandwidth. The narrow width results in a relatively high signal-to-noise ratio for low output power and thus also in relatively long-range and high-range accuracy. We have performed measurements of a diffuse target to determine the performance of a test laser radar system. The maximum range, range accuracy, and speed accuracy for a semiconductor laser with an output power of 10 mW and a linewidth of 400 kHz are presented. The influence of the laser's output power and coherence length on the performance of a semiconductor-laser-based FMCW laser radar is discussed.
We demonstrate the successful operation of a cw laser Doppler wind sensor at a wavelength of 1.55 mum. At longer ranges (>100 m) the signal conforms closely to complex Gaussian statistics, consistent with the incoherent addition of contributions from a large number of scattering aerosols. As the range is reduced, the probe volume rapidly diminishes and the signal statistics are dramatically modified. At the shortest ranges (<8 m) the signal becomes dominated by short bursts, each originating from a single particle within the measurement volume. These single-particle events can have a very high signal-to-noise ratio (SNR) because (1) the signal becomes concentrated within a small time window and (2) its bandwidth is much reduced compared with multiparticle detection. Examples of wind-signal statistics at different ranges and for a variety of atmospheric backscatter conditions are presented. Results show that single-particle-scattering events play a significant role even to ranges of ~50 m, leading to results inconsistent with complex Gaussian statistics. The potential is assessed for a low-power laser Doppler wind sensor that exploits the SNR enhancement obtained with single-particle detection.
PFN-2 (Pulse Forming Network model 2) is a 6.5-kV, 50-MW, 10-ppm pulsed power system for research on ignition of combustion plasmas. An LC-network, utilizing custom air-core inductors and polypropylene capacitors, allows formation of 200−900 μs "top-hat" pulses (FWHM). Stored energy is commuted by a custom surface-discharge switch and high-speed trigger system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.