To investigate the neural mechanisms that humans use to process the ambiguous force measured by the otolith organs, we measured vestibuloocular reflexes (VORs) and perceptions of tilt and translation. One primary goal was to determine if the same, or different, mechanisms contribute to vestibular perception and action. We used motion paradigms that provided identical sinusoidal inter-aural otolith cues across a broad frequency range. We accomplished this by sinusoidally tilting (20 degrees, 0.005-0.7 Hz) subjects in roll about an earth-horizontal, head-centered, rotation axis ("Tilt") or sinusoidally accelerating (3.3 m/s2, 0.005-0.7 Hz) subjects along their inter-aural axis ("Translation"). While identical inter-aural otolith cues were provided by these motion paradigms, the canal cues were substantially different because roll rotations were present during Tilt but not during Translation. We found that perception was dependent on canal cues because the reported perceptions of both roll tilt and inter-aural translation were substantially different during Translation and Tilt. These findings match internal model predictions that rotational cues from the canals influence the neural processing of otolith cues. We also found horizontal translational VORs at frequencies >0.2 Hz during both Translation and Tilt. These responses were dependent on otolith cues and match simple filtering predictions that translational VORs include contributions via simple high-pass filtering of otolith cues. More generally, these findings demonstrate that internal models govern human vestibular "perception" across a broad range of frequencies and that simple high-pass filters contribute to human horizontal translational VORs ("action") at frequencies above approximately 0.2 Hz.
To compare and contrast the neural mechanisms that contribute to vestibular perception and action, we measured vestibuloocular reflexes (VOR) and perceptions of tilt and translation. We took advantage of the well-known ambiguity that the otolith organs respond to both linear acceleration and tilt with respect to gravity and investigated the mechanisms by which this ambiguity is resolved. A new motion paradigm that combined roll tilt with inter-aural translation ("Tilt&Translation") was used; subjects were sinusoidally (0.8 Hz) roll tilted but with their ears above or below the rotation axis. This paradigm provided sinusoidal roll canal cues that were the same across trials while providing otolith cues that varied linearly with ear position relative to the earth-horizontal rotation axis. We found that perceived tilt and translation depended on canal cues, with substantial roll tilt and inter-aural translation perceptions reported even when the otolith organs measured no inter-aural force. These findings match internal model predictions that rotational cues from the canals influence the neural processing of otolith cues. We also found horizontal translational VORs that varied linearly with radius; a minimal response was measured when the otolith organs transduced little or no inter-aural force. Hence, the horizontal translational VOR was dependent on otolith cues but independent of canal cues. These findings match predictions that translational VORs are elicited by simple filtering of otolith signals. We conclude that internal models govern human perception of tilt and translation at 0.8 Hz and that high-pass filtering governs the human translational VOR at this same frequency.
Vestibular status and motor proficiency of 30 hearing-impaired and 15 motor-impaired learning-disabled children were documented to determine whether vestibular loss can account for deficits in motor co-ordination. Vestibular loss was differentiated from sensory organization deficits by means of VOR and postural orientation test results, which were compared with those of 54 normal seven-to 12-year-olds. Reduced or absent vestibular function in 20 hearing-impaired children did not affect development of motor proficiency, except in specific balance activities. However, sensory organization deficits in the learning-disabled group and in three of the hearing-impaired children were associated with widespread deficits in motor proficiency.
Long-term recovery from surgically induced unilateral loss of vestibular function was studied in 14 patients. Seven patients underwent surgical extirpation or section of the vestibular nerve, and seven patients underwent labyrinthectomy without vestibular nerve section. The vestibulo-ocular reflex (VOR) and postural control were evaluated preoperatively and monitored for up to 4 years postoperatively with use of pseudorandom rotation (combined sinusoidal frequencies from 0.009 to 1.5 Hz) and moving platform posturography. Immediately following surgery all patients showed minimal reductions in the VOR gain constant, but marked reduction in the time constant, and marked increase in slow eye velocity bias. Bias returned to normal values within about 10 days, but time constants never returned to normal values. Results of standard Romberg tests in these patients were normal throughout the preoperative and postoperative periods. However, all patients showed marked postural control abnormalities in tests of the ability to maintain balance in unusual sensory environments in the immediate postoperative period. Seventy-five percent of the patients eventually recovered normal postural control. Postural control returned to near baseline performance with a time course similar to that of the VOR bias. However, postural control also continued to improve after the recovery of VOR bias was complete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.