Most high-performance organic solar cells involve bulk-heterojunctions in order to increase the active donor-acceptor interface area. The power conversion efficiency depends critically on the nano-morphology of the blend and the interface. Spectroscopy of the sub-bandgap region, i.e., below the bulk absorption of the individual components, provides unique opportunities to study interface-related properties. We present absorption measurements in the sub-bandgap region of bulk heterojunctions made of poly(3-hexylthiophene-2,5-diyl) as an electron donor and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as an electron acceptor and compare them with quantum-chemical calculations and recently published data on the external quantum efficiency (EQE). The very weak absorption of the deep sub-bandgap region measured by the ultra-sensitive Photothermal Deflection Spectroscopy (PDS) features Urbach tails, polaronic transitions, conventional excitons, and possibly charge-transfer states. The quantum-chemical calculations allow characterizing some of the unsettled spectral features.
P3HT:PCBM (poly(3-hexylthiophene-2,5-diyl): ([6,6]-phenyl-C61-butyric acid methyl ester)-based bulk heterojunctions (BHJs) were doped by using 4-toluenesulfonic acid (TSA) as dopant. This approach was inspired by the well-known interfacial doping of the active layer via the electron-blocking layer PEDOT:PSS (poly(3,4-ethylenedioxy-thiophene):poly-(styrenesulfonate)) at its interface. TSA is amphiphilic, acidic, and structurally very similar to the monomeric building block of PSS. Upon TSA doping, a notable increase in the light absorption in the sub-bandgap region of pristine P3HT was observed. These features are assigned to polaron transitions within P3HT; however, the TSA impact on polaron absorption features in the BHJ is rather small. Although, for small TSA concentrations and thick active layers (∼220 nm) the fill factor of the solar cells improved dramatically with increasing TSA content in the active layer, which is discussed in terms of contact resistances at interfaces in the present paper. For 0.5% TSA concentration in the active layer solution the maximum of the power conversion efficiency was obtained. At the same time, the reproducibility of solar cell performance parameters was considerably improved.
The ordinary dielectric function of poly(3,4-ethylenedioxy-thiophene) poly(styrene sulfonate) (PEDOT:PSS) thin films was measured using a combination of spectroscopic ellipsometry and photothermal deflection spectroscopy. This method combination allows for a highly sensitive optical characterization of thin films. Hence, even the detection of weak sub-bandgap and intra-band absorptions is enabled. These intraband transitions of free charge carriers were modeled using a Drude-type oscillator to derive an intrinsic resistances for PEDOT:PSS. These optically derived resistances were compared with those determined by a 4-probe measurement setup for two different types of PEDOT:PSS and for varied annealing temperatures. Good agreement between optical and electrical measurements could be obtained for annealing temperatures smaller than 180∘C. Therefore, we conclude that the proposed combination of our two optical methods is well suited to determine electrical resistances of organic layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.