Among the forces responsible for shaping proteins, interactions between side chains of aromatic residues play an important role as they are involved in the secondary and the tertiary structures of proteins contributing to the formation of hydrophobic domains. The purpose of this paper is to document this interaction in two capped dipeptides modeling a segment of a protein chain having two consecutive Phe residues, Ac-Phe-Phe-NH(2) and Ac-Phe-D-Phe-NH(2). These two molecules have been investigated in the gas phase by IR/UV double resonance spectroscopy, and the assignment of the observed conformers has been done by comparison with quantum chemistry calculations. Both peptides are found to adopt a beta-turn type I conformation stabilized by an edge-to-face interaction between the two aromatic rings. Comparison with other dipeptides in the literature demonstrates the impact of this aromatic-aromatic interaction on the shape adopted by the peptide chain, and its role among the other shaping forces (H-bonds, NH-pi interactions) is discussed. As an illustration, the H-bond strength is found to be significantly lower in the beta-turn type I conformer, in which the two rings interact, as compared to the similar conformer where such an interaction does not exist. This structural feature due to the backbone distortion induced by the interaction between the aromatic rings makes this system a good test for evaluating the ability of computational methods to correctly account for the competition between these forces. MP2, SCS-MP2, DFT, and DFT-D methods have been assessed in this respect. Comparison between geometries, energies, and frequency calculations illustrate their respective limitations in describing conformations resulting from a subtle equilibrium between the several interactions at play.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.