Left ventricular mass (LVM) is a highly heritable trait1 and an independent risk factor for all-cause mortality2. To date, genome-wide association studies (GWASs) have not identified the genetic factors underlying LVM variation3 and the regulatory mechanisms for blood pressure (BP)-independent cardiac hypertrophy remain poorly understood4,5. Unbiased systems-genetics approaches in the rat6,7 now provide a powerful complementary tool to GWAS and we applied integrative genomics to dissect a highly replicated, BP-independent LVM locus on rat chromosome 3p. We identified endonuclease G (Endog), previously implicated in apoptosis8 but not hypertrophy, as the gene at the locus and demonstrated loss-of-function mutation in Endog associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly inferred ENDOG in fundamental mitochondrial processes unrelated to apoptosis. We showed direct regulation of ENDOG by ERRα and PGC1α, master regulators of mitochondrial and cardiac function9,10,11, interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, Endog deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated reactive oxygen species (ROS), which was associated with enlarged and steatotic cardiomyocytes. Our studies establish further the link between mitochondrial dysfunction, ROS and heart disease and demonstrate a new role for Endog in maladaptive cardiac hypertrophy.
The present study was undertaken to evaluate the effects of chronic treatment with cis-4-[4-(3- adamantan-1-yl-ureido)cyclohexyl-oxy]benzoic acid (c-AUCB), a novel inhibitor of soluble epoxide hydrolase (sEH), which is responsible for the conversion of biologically active epoxyeicosatrienoic acids (EETs) to biologically inactive dihydroxyeicosatrienoic acids (DHETEs), on blood pressure (BP) and myocardial infarct size in male heterozygous Ren-2 transgenic rats (TGR) with established hypertension. Normotensive Hannover Sprague-Dawley (HanSD) rats served as controls. Myocardial ischemia was induced by coronary artery occlusion. Systolic BP was measured in conscious animals by tail-plethysmography. c-AUCB was administrated in drinking water. Renal and myocardial concentrations of EETs and DHETEs served as markers of internal production of epoxygenase metabolites. Chronic treatment with c-AUCB, which resulted in significant increases in the availability of biologically active epoxygenase metabolites in TGR – assessed as the ratio of EETs/DHETEs – was accompanied by a significant reduction in BP and significantly reduced infarct size in TGR as compared with untreated TGR. The cardioprotective action of c-AUCB treatment was completely prevented by acute administration of a selective EETs antagonist (14,15-epoxyeicosa5(Z)-enoic acid), supporting the notion that the improved cardiac ischemic tolerance conferred by sEH inhibition is mediated by EETs actions at the cellular level. These findings indicate that chronic inhibition of sEH exhibits antihypertensive and cardioprotective actions in this transgenic model of angiotensin II-dependent hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.