Rephasing and non-rephasing two-dimensional coherent spectra map the anti-crossing associated with normal-mode splitting in a semiconductor microcavity. For a 12-meV detuning range near zero detuning, it is observed that there are two diagonal features related to the intra-action of exciton-polariton branches and two off-diagonal features related to coherent interaction between the polaritons. At negative detuning, the lineshape properties of the diagonal intra-action features are distinguishable and can be associated with cavity-like and exciton-like modes. A biexcitonic companion feature is observed, shifted from the exciton feature by the biexciton binding energy.Closer to zero detuning, all features are enhanced and the diagonal intra-action features become nearly equal in amplitude and linewidth. At positive detuning the exciton-and cavity-like characteristics return to the diagonal intra-action features. Off-diagonal interaction features exhibit asymmetry in their amplitudes throughout the detuning range. The amplitudes are strongly modulated (and invert) at small positive detuning, as the lower polariton branch crosses the bound biexciton energy determined from negative detuning spectra.
Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation micro-spectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin precession length SOI is defined as one complete precession in the effective magnetic field. It is observed that application of (a) an out-ofplane electric field changes the spin decay time and SOI through the Rashba component of the spin-orbit coupling, (b) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (c) an in-plane electric field markedly modifies both the SOI and diffusion coefficient. While simulations reproduce the main features of the experiments, the latter results exceed the corresponding simulations and extend previous studies of drift-current-dependent spin-orbit interactions.
Exciton, trion and electron spin dynamics in a 20 nm wide modulation-doped GaAs single quantum well are investigated using resonant ultrafast two-color Kerr rotation spectroscopy. Excitons and trions are selectively detected by resonant probe pulses while their relative spectral weight is controlled by adjusting the gate voltage which tunes the carrier density. Tuning the carrier density markedly influences the spin decay time of the two dimensional electron gas. The spin decay time can be enhanced by a factor of 3 at an intermediate carrier concentration in the quantum well, where excitons and trions coexist in the system. In addition, we explore the capability to tune the g-factor of the electron gas via the carrier density.
Understanding and controlling the spin degree of freedom in two-dimensional transition metal dichalcogenides offers the potential for designing functional quantum materials. This work investigates the dynamics of photo- and resident carrier spins in an encapsulated MoSe2 monolayer using non-degenerate time-resolved Kerr-rotation microscopy. The lightly doped monolayer exhibits clear exciton and trion resonances with spin-polarizations that are characterized by a fast (~20 ps) decay attributed to photocarrier relaxation and recombination, followed by a slow (~690 ps) decay associated with resident carrier depolarization. Dual-frequency Kerr-rotation spectra directly reveal exciton-trion coupling on ultrashort timescales and within the spin coherence time of the system. Moreover, the distribution of the exciton-trion coupling features exposes inhomogeneous broadening likely arising from different domains within the excitation spot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.