We have investigated by atomic force microscopy and scanning tunneling microscopy subsequent stages of the heteroepitaxy of InAs on GaAs(001) from the initial formation of the strained two-dimensional wetting layer up to the development of three-dimensional quantum dots. We provide evidence of structural features that play a crucial role in the two- to three-dimensional transition and discuss their contribution to the final morphology of the self-assembled nanoparticles. A model is suggested for the strained phase at the critical thickness consisting of an intermixed InxGa1 - xAs surface layer of composition x = 0.82 and InAs "floating" on top. Such "floating" phase participate to the large mass transport along the surface during the two- to three-dimensional transition that accounts quantitatively for the total volume of dots
On the complex behavior of strain relaxation in (In,Ga)As/GaAs (001) quantum dot molecules Appl. Phys. Lett. 95, 023103 (2009); 10.1063/1.3176409Competition between strain-induced and temperature-controlled nucleation of InAs/GaAs quantum dots
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.