Phosphonate additives have important applications both in biomineralization processes and in industrial mineral scale formation. The kinetics of crystal growth of hydroxyapatite (HAP) has been investigated in the presence of seven phosphonate additives: HEDP (hydroxyethylenediphosphonic acid), DETPMP (diethylenetriaminepenta(methylenephosphonic acid)), DHTPMP (dihexyltriaminepenta (methylenephosphonic acid)), AMP (aminotris(methylenephosphonic acid)), HDTMP (hexyldiaminetetra(methylenephosphonic acid)), EDTMP (ethylenediaminetetra(methylenephosphonic acid)), and DETMP (diaminoethoxytetra(methylenephosphonic acid)). The constant composition (CC) method, used in this study, enabled reliable crystal growth rate data to be obtained even when the reactions were appreciably inhibited. The experiments were performed at pH 7.40, ionic strength 0.15 mol L -1 (maintained with NaCl), and an HAP relative supersaturation, σ, of 5.5. The results indicate that traces of some phosphonates (e10 -6 mol L -1 ) are extremely effective in inhibiting crystal growth. Assuming that the adsorbed additives block discrete growth sites on the crystal surfaces, the kinetic results may be interpreted in terms of a Langmuir adsorption model yielding kinetic affinity constants. The order of inhibitory effectiveness, DETMP > EDTMP > DETPMP > HEDP g DHTPMP > HDTMP g AMP, reflects the ability of the phosphonates to bind to the apatite surfaces. ζ potential measurments of HAP surfaces in the presence of additives provide important corroboratory data for the interpretation of the crystal growth results.
The semiconducting compound TlGaSe 2 was grown by solid state reaction technique. The crystal structure of this material was confirmed by single-crystal X-ray diffraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.