When it comes to bone replacement in loadbearing areas, there are currently no adequate biodegradable implants available. Several non-degradable metallic materials fulfill the requirements of biocompatibility and mechanical strength. However, besides magnesium, only iron is a degradable metallic material. The aim of this longterm degradation study was to investigate the effects of iron beta-tricalcium phosphate interpenetrating phase composite on degradation rate and strength in comparison to pure iron. Cylindrical samples with 0-50 vol% betatricalcium phosphate (ß-TCP) were prepared by powder injection molding. In addition to dense samples, porous iron samples with a porosity of 60.3 % were produced with polyoxymethylene as a placeholder. Dense and porous samples were immersed in 0.9 % sodium chloride solution (NaCl) or in phosphate buffered saline solution (PBS) for 56 days. Following immersion, the degradation rate, compressive yield strength, and ion release were determined. A maximum degradation rate of 196 lm/year was observed after 56 days for iron with 40 vol% ß-TCP. This was found to be 28 % higher than for pure iron. After immersion, the compressive yield strength of pure iron decreased by 44 % (NaCl) and 48 % (PBS). In comparison, iron with 40 % ß-TCP samples lost \1 % (NaCl) and 9 % (PBS) of strength following immersion. It was demonstrated that the solubility of calcium phosphate enhanced the corrosion processes and led to an increase in degradation, thus showing that the addition of ß-TCP to pure iron can be a promising route for a novel degradable bone substitute material, particularly for load-bearing areas due to the increased strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.