The possibility to detect fast neutrons as a distinct signal from that one of γ-rays background is surely of great importance for several topics, spanning from homeland security to radiation monitoring in nuclear physics research plants. Nowadays, Helium-3 based detectors are extremely expensive, while the use of large volume liquid scintillators presents serious concerns related to spillage risks and waste disposal. A very attractive alternative is the use of commercially available solid scintillators, which exploits an aromatic polymer matrix entrapping very high loadings of primary dye, thereby enabling the use of pulse shape analysis (PSA) to discriminate between fast neutrons and γ-rays. In this work, we analyse in detail the optical features of a solid scintillator composed by polymethylphenylsiloxane (PMPS) as base polymer loaded with moderate amounts of 2,5-diphenyloxazole (PPO). Furthermore, fluorescence decay kinetics have been correlated to the observed pulse shape discrimination capabilities of this radiation and thermally resistant scintillator, whose performances have been discussed in terms of conformational features and excimers formation revealed by the optical analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.