Cutaneous afferents exhibit changes in excitability after impulse activity that are correlated with functional modality but are independent of axonal diameter, as studied in 39 cold fibers and 51 nociceptors of the rat. Latency of conducted impulses was used to indicate changes in axonal excitability caused by electrical stimulation. Stimuli were applied both at fixed frequencies and at the time intervals of impulses previously recorded during response to natural stimulation. Latency increased following both these forms of electrical stimulation, as well as after natural stimulation of the receptive fields. The latency increase was correlated with the number of impulses and the frequency of the preceding discharge in all of 4 nociceptors and 13 cold fibers studied for this feature. Increase of latency by electrical or natural stimulation led to reduced responsiveness to natural stimulation. The magnitude and time course of latency changes were correlated with fiber modality. In 32 nociceptors the latency increased continuously with time during a stimulus train, whereas in 21 cold fibers there was only an initial increase in latency over the first few seconds, after which the latency remained at a plateau even as the firing response continued. Paralleling this slowing, impulse failure occurred more frequently during repetitive stimulation in both A delta and C nociceptors than in velocity-matched cold fibers of either class. Based on the magnitude of latency increases during stimulus trains at different frequencies, two distinct patterns were discerned in A nociceptors: "Type II" fibers slowed significantly more than "Type I" or cold fibers. The results support the hypotheses (1) that the pattern of latency changes during activity are signatures for the modality in a given fiber; and (2) that endogenous, activity-dependent processes of the axon contribute to adaptation and encoding in cutaneous sensory afferents.
Blocks of greater depth and longer duration result from injection of smaller volumes and, correspondingly, higher lidocaine concentrations containing the same dose. The corollary is that lower lidocaine doses are required to achieve the same effect when smaller volumes are injected. Curiously, when the equivalent E50 is injected, total drug taken into the nerve is less from the smaller volumes than from the larger volumes, even though the peak functional effects are equal. Total intraneural local anesthetic may not represent the effective drug in the compartment that contains nerve axons, the actual location of neural blockade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.