The energies of the excited states in very neutron-rich (42)Si and (41,43)P have been measured using in-beam gamma-ray spectroscopy from the fragmentation of secondary beams of (42,44)S at 39A MeV. The low 2(+) energy of (42)Si, 770(19) keV, together with the level schemes of (41,43)P, provides evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that (42)Si is best described as a well-deformed oblate rotor.
The neutron-rich (66,68)Ni have been produced at GANIL via interactions of a 65.9A MeV 70Zn beam with a 58Ni target. Their reduced transition probability B(E2;0(+)(1)-->2+) has been measured for the first time by Coulomb excitation in a (208)Pb target at intermediate energy. The B(E2) value for (68)Ni(40) is unexpectedly small. An analysis in terms of large scale shell model calculations stresses the importance of proton core excitations to reproduce the B(E2) values and indicates the erosion of the N = 40 harmonic-oscillator subshell by neutron-pair scattering.
In-beam ␥-ray spectroscopy using fragmentation reactions of both stable and radioactive beams has been performed in order to study the structure of excited states in neutron-rich oxygen isotopes with masses ranging from A = 20 to 24. For the produced fragments, ␥-ray energies, intensities, and ␥-␥ coincidences have been measured. Based on this information new level schemes are proposed for
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.