The energies of the excited states in very neutron-rich (42)Si and (41,43)P have been measured using in-beam gamma-ray spectroscopy from the fragmentation of secondary beams of (42,44)S at 39A MeV. The low 2(+) energy of (42)Si, 770(19) keV, together with the level schemes of (41,43)P, provides evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that (42)Si is best described as a well-deformed oblate rotor.
The neutron-rich (66,68)Ni have been produced at GANIL via interactions of a 65.9A MeV 70Zn beam with a 58Ni target. Their reduced transition probability B(E2;0(+)(1)-->2+) has been measured for the first time by Coulomb excitation in a (208)Pb target at intermediate energy. The B(E2) value for (68)Ni(40) is unexpectedly small. An analysis in terms of large scale shell model calculations stresses the importance of proton core excitations to reproduce the B(E2) values and indicates the erosion of the N = 40 harmonic-oscillator subshell by neutron-pair scattering.
We report on direct time-of-flight based mass measurements of 16 light neutron-rich nuclei. These include the first determination of the masses of the Borromean drip-line nuclei (19)B, (22)C, and (29)F as well as that of (34)Na. In addition, the most precise determinations to date for (23)N and (31)Ne are reported. Coupled with recent interaction cross-section measurements, the present results support the occurrence of a two-neutron halo in (22)C, with a dominant ν2s(1/2)(2) configuration, and a single-neutron halo in (31)Ne with the valence neutron occupying predominantly the 2p(3/2) orbital. Despite a very low two-neutron separation energy the development of a halo in (19)B is hindered by the 1d(5/2)(2) character of the valence neutrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.