A number of quantitative, real-time PCR methods have been developed for determining transgene copy numbers in plants. Here, we demonstrate that the Roche LightCycler system can be used to determine the zygosity of transgenic lines without the use of standard curves or efficiency correction calculations. We have developed a duplex PCR assay which permits the determination of zygosity, relative to a calibrator sample, in transgenic rice lines containing the gene for a viral glycoprotein. Our data demonstrate that unambiguous 2-fold discrimination of copy number can be attained by calculating relative copy number using the threshold crossing point (Ct) calculated by the LightCycler software combined with delta delta Ct calculations, provided that the appropriate calibrator sample is included in each run. The method presented here is rapid, sensitive, robust and easy to optimise.
The use of transgenic plants in the production of recombinant proteins for human therapy, including subunit vaccines, is being investigated to evaluate the efficacy and safety of these emerging biopharmaceutical products. We have previously shown that synthesis of recombinant glycoprotein B (gB) of human cytomegalovirus can be targeted to seeds of transgenic tobacco when directed by the rice glutelin 3 promoter, with gB retaining critical features of immunological reactivity (E.S. Tackaberry et al. 1999. Vaccine, 17: 3020-3029). Here, we report development of second generation transgenic plant lines (T1) homozygous for the transgene. Twenty progeny plants from two lines (A23T(1)-2 and A24T(1)-3) were grown underground in an environmentally contained mine shaft. Based on yields of gB in their seeds, the A23T(1)-2 line was then selected for scale-up in the same facility. Analyses of mature seeds by ELISA showedthat gB specific activity in A23T(1)-2 seeds was over 30-fold greater than the best T0 plants from the same transformation series, representing 1.07% total seed protein. These data demonstrate stable inheritance, an absence of transgene inactivation, and enhanced levels of gB expression in a homozygous second generation plant line. They also provide evidence for the suitability of using this environmentally secure facility to grow transgenic plants producing therapeutic biopharmaceuticals.
Production of recombinant subunit vaccines in transgenic plants may be a means of reducing vaccine costs while increasing availability and safety. A plant-derived product found safe and effective for oral administration would provide additional advantages when used as a vaccine. Outstanding issues with the technology include transgene stability through successive generations and consistent bioproduction. We previously reported expression of glycoprotein B (gB) of human cytomegalovirus in seeds of transgenic tobacco. Here the goal was to determine if gB could be similarly expressed in rice, and if so, to examine expression over several plant generations. Results show that immunoreactive gB was successfully expressed in transgenic rice seeds, with sustained expression over three generations. The gB contained several neutralizing epitopes and was stable over 27 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.