Single crystal GaN films with a wurtzite structure were grown on the basal plane of sapphire. A high density of threading dislocations parallel to the c-axis crossed the film from the interface to the film surface. They were found to have a predominantly edge character with a Burgers vector. In addition, dislocation hal-loops, elongated along the c-axis of GaN, were also found on the prism planes. These dislocations had a mostly screw character with a [0001] Burgers vector. Substrate surface steps with a height of were found to be accommodated by localized elastic bending of GaN (0001)GaN planes in the vicinity of the film/substrate interface. Observations show that the region of the film, with a thickness of ∼100 nm, adjacent to the interface is highly defective. This region is thought to correspond to the low-temperature GaN “buffer” layer which is initially grown on the sapphire substrate. Based on the experimental observations, a model for the formation of the majority threading dislocations in the film is proposed. The analysis of the results leads us to conclude that the film is under residual biaxial compression.
Epitaxial /3-SiC (3C) films were grown on (0001) 6H-SiC and 15R-SiC substrates by chemical vapor deposition (CVD). TEM characterization revealed that films on both substrates exhibited large areas of atomically flat, coherent interfaces. However, when 3C-SiC films were grown on 6H substrates, double position boundaries (DPB's) were frequently observed, and islands of 6H were occasionally embedded in the predominantly 3C film. In contrast, films of 3C-SiC grown on 15R substrates exhibited relatively few DPB's and only occasional islands of 15R. A model of interlayer interactions in SiC was applied to predict the atomic structures at both 3C/6H and 3C/15R interfaces, and these predictions were consistent with experimental observations of the interfaces by TEM. The observed interface structures and defect distributions were attributed to a microscopic kinetic mechanism of terrace growth. Consideration of step energies and growth kinetics led to the prediction that DPB's can be avoided by growing 3C-SiC films on 15R-SiC substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.