We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diffusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution recently obtained by Carrillo. Examples of such BGK models are provided.
In this paper we study a semilinear hyperbolic-parabolic system modeling biological phenomena evolving on a network composed by oriented arcs. We prove the existence of global (in time) smooth solutions to this problem. The result is obtained by using energy estimates with suitable transmission conditions at nodes. 1991 Mathematics Subject Classification. Primary 35R02; Secondary 35Q92,35L50,35M33.
This paper approaches the question of existence and uniqueness of stationary solutions to a semilinear hyperbolic-parabolic system and the study of the asymptotic behaviour of global solutions. The system is a model for some biological phenomena evolving on a network composed by a finite number of nodes and oriented arcs. The transmission conditions for the unknowns, set at each inner node, are crucial features of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.