Mucosal surfaces play a central role in the pathogenesis of rheumatoid arthritis (RA). Several risk factors, such as cigarette smoking, environmental pollution, and periodontitis interact with the host at the mucosal level, triggering immune system activation. Moreover, the alteration of microbiota homeostasis is gaining increased attention for its involvement in the disease pathogenesis, modulating the immune cell response at a local and subsequently at a systemic level. Currently, the onset of the clinical manifest arthritis is thought to be the last step of a series of pathogenic events lasting years. The positivity for anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF), in absence of symptoms, characterizes a preclinical phase of RA—namely systemic autoimmune phase- which is at high risk for disease progression. Several immune abnormalities, such as local ACPA production, increased T cell polarization towards a pro-inflammatory phenotype, and innate immune cell activation can be documented in at-risk subjects. Many of these abnormalities are direct consequences of the interaction between the environment and the host, which takes place at the mucosal level. The purpose of this review is to describe the humoral and cellular immune abnormalities detected in subjects at risk of RA, highlighting their origin from the mucosa–environment interaction.
Natural resins were frequently employed in the past as adhesives or as components of oleo-resinous media in paintings. The identification of vegetable resins is still an open problem. The aim of this paper is to analyse by GC-MS some vegetable resins frequently employed in paintings, such as Venice turpentine, dammar, copal, elemi, in order to identify their main components in samples both raw and aged. Some molecules are proposed as chemical markers to identify these natural resins. Two samples scraped off from XV and XVII century paintings were used to test the reliability of proposed method.
A new assay for the screening of hypochlorite/hypochlorous acid (XOCl) scavengers, based on the reversed-phase high performance liquid chromatographic analysis of human serum albumin (HSA, 0.2% in 100 mM sodium phosphate, pH 7), before and after oxidation by XOCl (1.6 mM), was developed. XOCl induced a significant decrease of the area under the chromatographic peak of HSA at 280 nm due to the oxidation of the aromatic amino acids tryptophan and tyrosine, as suggested by the literature and by the chromatographic analyses and the electrochemical study performed here. The assay was validated by testing known XOCl scavengers such as ascorbic acid, cysteine, glutathione, S-methylglutathione and alpha-lipoic acid and other antioxidants such as carnosine and chlorogenic acid, which inhibited the oxidation of HSA. Quantitative activities were calculated using an original formula based on the changes of the area of the albumin peak. Electrochemical data collected here in a homogeneous medium showed that the anodic potentials of the antioxidants tested are less positive (ascorbic acid, chlorogenic acid and cysteine) or similar (alpha-lipoic acid) compared with those of the aromatic residues (tryptophan and tyrosine) of HSA oxidized by XOCl. However, as expected, carnosine, glutathione and S-methylglutathione were inactive at a glassy-carbon, gold or platinum electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.