During the past two decades, tissue engineering and the regenerative medicine field have invested in the regeneration and reconstruction of pathologically altered tissues, such as cartilage, bone, skin, heart valves, nerves and tendons, and many others. The 3D structured scaffolds and hydrogels alone or combined with bioactive molecules or genes and cells are able to guide the development of functional engineered tissues, and provide mechanical support during in vivo implantation. Naturally derived and synthetic polymers, bioresorbable inorganic materials, and respective hybrids, and decellularized tissue have been considered as scaffolding biomaterials, owing to their boosted structural, mechanical, and biological properties. A diversity of biomaterials, current treatment strategies, and emergent technologies used for 3D scaffolds and hydrogel processing, and the tissue-specific considerations for scaffolding for Tissue engineering (TE) purposes are herein highlighted and discussed in depth. The newest procedures focusing on the 3D behavior and multi-cellular interactions of native tissues for further use for in vitro model processing are also outlined. Completed and ongoing preclinical research trials for TE applications using scaffolds and hydrogels, challenges, and future prospects of research in the regenerative medicine field are also presented.
In cartilage tissue engineering (TE), several processing technologies have been combined to create scaffolds for efficient tissue repair. In our study, we propose novel silk fibroin (SF) scaffolds derived from enzymatically crosslinked SF hydrogels processed by salt-leaching and freeze-drying technologies, for articular cartilage applications. Though these scaffolds, we were able to combine the elastic properties of hydrogel-based systems, with the stability, resilience and controlled porosity of scaffolds processed via salt-leaching and freeze-drying technologies. SF protein has been extensively explored for TE applications, as a result of its mechanical strength, elasticity, biocompatibility, and biodegradability. Thus, the structural, mechanical and biological performance of the proposed scaffolds potentiates their use as three-dimensional matrices for cartilage regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.