In this study, we used the non-carotenogenic yeast Pichia pastoris X33 as a receptor for β-carotene-encoding genes, in order to obtain new recombinant strains capable of producing different carotenoidic compounds. We designed and constructed two plasmids, pGAPZA-EBI* and pGAPZA-EBI*L*, containing the genes encoding lycopene and β-carotene, respectively. Plasmid pGAPZA-EBI*, expresses three genes, crtE, crtB, and crtI*, that encode three carotenogenic enzymes, geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, respectively. The other plasmid, pGAPZA-EBI*L*, carried not only the three genes above mentioned, but also the crtL* gene, that encodes lycopene β-cyclase. The genes crtE, crtB, and crtI were obtained from Erwinia uredovora, whereas crtL* was cloned from Ficus carica (JF279547). The plasmids were integrated into P. pastoris genomic DNA, and the resulting clones Pp-EBI and Pp-EBIL were selected for either lycopene or β-carotene production and purification, respectively. Cells of these strains were investigated for their carotenoid contents in YPD media. These carotenoids produced by the recombinant P. pastoris clones were qualitatively and quantitatively analyzed by high-resolution liquid chromatography, coupled to photodiode array detector. These analyses confirmed that the recombinant P. pastoris clones indeed produced either lycopene or β-carotene, according to the integrated vector, and productions of 1.141 μg of lycopene and 339 μg of β-carotene per gram of cells (dry weight) were achieved. To the best of our knowledge, this is the first time that P. pastoris has been genetically manipulated to produce β-carotene, thus providing an alternative source for large-scale biosynthesis of carotenoids.
The biodegradation of naphthalene in sea water by freely suspended and alginate-entrapped cells of Pseudomonas stutzeri 19SMN4 has been investigated in batch cultures. The results showed that immobilized cells can be stored at 4 • C for 1 month without loss of viability. The biodegradation was highly affected by the availability of nitrogen and phosphorous, so at 30 • C a naphthalene concentration of 25 mM was almost completely degraded (93%) by free cells in 6 days in samples supplemented with these nutrients, whereas only 42% naphthalene was consumed in the nonsupplemented samples. Biodegradation was much slower at 16 • C than at 30 • C; after 6 days of culture at 30 • C, almost all naphthalene was degradated by free and immobilized cells, whereas only 22% and 34% at 16 • C, respectively. The degradation rate remained unaffected when the naphthalene concentration was reduced from 25 to 10 mM. Alginate of three different viscosities was used for immobilization of cells. After 7 days of culture, beads formed with 31.4 cP alginate were fragmented, whereas beads formed with 240 and 3600 cP did not display structural changes and afforded the same degradation rate. Beads formed with high-viscosity alginate retained cells more efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.