Single crystals of lithium selenoindate (LiInSe2) are grown by the Bridgman–Stockbarger technique up to sizes of 10 mm in diameter and 20 mm in length. The different phases have color from yellow (as grown) to dark red (after annealing) but all have the same wurtzite type structure mm2 with slightly differing cell parameters. The band gap for the yellow phase at 300 K is at 2.86–2.87 eV. The red color is attributed to point defects and can be removed by proper illumination. Sellmeier equations are constructed for the 0.5–11 μm range and their validity is checked with second harmonic generation which provides first estimations of the nonlinear coefficients of LiInSe2. The potential of LiInSe2 is compared to that of the widely spread and technologically mature AgGaS2.
We performed time-domain terahertz spectroscopy on thin layers of single-walled carbon nanotubes (SWCNTs) coated on flexible films. The SWCNT layers demonstrate good shielding of electromagnetic waves in the terahertz range while maintaining good transparency for visible light. The shielding efficiency can be engineered through the thickness control and/or chemical treatment of SWCNT layers. The frequency-dependent dielectric constants of SWCNT layers are in good agreement with the Drude free-electron model.
We demonstrate that a filtration method is efficient for the fabrication of thick single-walled nanotube films and is capable of shielding terahertz waves. Shielding effectiveness can be engineered by controlling the film thickness and we achieved 38 dB for a 950-nm-thick film. In addition, we found that the films exhibit a dispersion of dielectric constant obeying the Drude free-electron model, whereas the plasma frequency decreases with increasing film thickness. Based on the nanotube films with a thickness greater than the skin depth, we fabricated grid polarizers by laser-machining process, which enable us to achieve a large polarization extinction ratio.
We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.
The influences of the laser lift-off (LLO) process on the InGaN/GaN blue light emitting diode (LED) structures, grown on sapphire substrates by low-pressure metalorganic chemical vapor deposition, have been comprehensively investigated. The vertical LED structures on Cu carriers are fabricated using electroplating, LLO, and inductively coupled plasma etching processes sequentially. A detailed study is performed on the variation of defect concentration and optical properties, before and after the LLO process, employing high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) observations, cathodoluminescence (CL), photoluminescence (PL), and high-resolution X-ray diffraction (HRXRD) measurements. The SEM observations on the distribution of dislocations after the LLO show well that even the GaN layer near to the multiple quantum wells (MQWs) is damaged. The CL measurements reveal that the peak energy of the InGaN/GaN MQW emission exhibits a blue-shift after the LLO process in addition to a reduced intensity. These behaviors are attributed to a diffusion of indium through the defects created by the LLO and creation of non-radiative recombination centers. The observed phenomena thus suggest that the MQWs, the active region of the InGaN/GaN light emitting diodes, may be damaged by the LLO process when thickness of the GaN layer below the MQW is made to be 5 μm, a conventional thickness. The CL images on the boundary between the KrF irradiated and non-irradiated regions suggest that the propagation of the KrF laser beam and an accompanied recombination enhanced defect reaction, rather than the propagation of a thermal shock wave, are the main origin of the damage effects of the LLO process on the InGaN/GaN MQWs and the n-GaN layer as well
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.