Supervised classification of remotely sensed images is a classical method to update topographic geospatial databases. The task requires training data in the form of image data with known class labels, whose generation is time-consuming. To avoid this problem one can use the labels from the outdated database for training. As some of these labels may be wrong due to changes in land cover, one has to use training techniques that can cope with wrong class labels in the training data. In this paper we adapt a label noise tolerant training technique to the problem of database updating. No labelled data other than the existing database are necessary. The resulting label image and transition matrix between the labels can help to update the database and to detect changes between the two time epochs. Our experiments are based on different test areas, using real images with simulated existing databases. Our results show that this method can indeed detect changes that would remain undetected if label noise were not considered in training.
ABSTRACT:Domain adaptation techniques in transfer learning try to reduce the amount of training data required for classification by adapting a classifier trained on samples from a source domain to a new data set (target domain) where the features may have different distributions. In this paper, we propose a new technique for domain adaptation based on logistic regression. Starting with a classifier trained on training data from the source domain, we iteratively include target domain samples for which class labels have been obtained from the current state of the classifier, while at the same time removing source domain samples. In each iteration the classifier is re-trained, so that the decision boundaries are slowly transferred to the distribution of the target features. To make the transfer procedure more robust we introduce weights as a function of distance from the decision boundary and a new way of regularisation. Our methodology is evaluated using a benchmark data set consisting of aerial images and digital surface models. The experimental results show that in the majority of cases our domain adaptation approach can lead to an improvement of the classification accuracy without additional training data, but also indicate remaining problems if the difference in the feature distributions becomes too large.
ABSTRACT:Online multi-person tracking in image sequences is commonly guided by recursive filters, whose predictive models define the expected positions of future states. When a predictive model deviates too much from the true motion of a pedestrian, which is often the case in crowded scenes due to unpredicted accelerations, the data association is prone to fail. In this paper we propose a novel predictive model on the basis of Gaussian Process Regression. The model takes into account the motion of every tracked pedestrian in the scene and the prediction is executed with respect to the velocities of all interrelated persons. As shown by the experiments, the model is capable of yielding more plausible predictions even in the presence of mutual occlusions or missing measurements. The approach is evaluated on a publicly available benchmark and outperforms other state-of-the-art trackers.
Abstract. We present an approach for detecting early signs for upcoming forest damages by training a Convolutional Neural Network (CNN) for the pixel-wise prediction of the remaining life-time (RLT) of trees in forests based on Sentinel-2 imagery. We focus on a scenario in which reference data are only available for a related task, namely for a bi-temporal pixel-wise classification of forest degradation. This reference is used to train a CNN for the pixel-wise prediction of forest degradation. In this context, we propose a new sub-sampling-based approach for compensating the effects of a heavy class imbalance in the training data. Using the resulting classification model, we predict semi-labels for images of a Sentinel-2 time series, from which training data for a CNN designed to regress the RLT can be derived after some label cleansing. However, due to data gaps in the time series, e.g. caused by clouds, only intervals can be derived for the target variable to be regressed, and for some training pixels one of the interval limits may even be unknown. Consequently, we propose a new loss function for training a CNN for regressing the RLT that only requires the known interval limits. The method is evaluated on a data set in Germany, covering a time-span of 5 years. We show that the proposed sub-sampling strategy for dealing with strong label imbalance when training the classifier significantly reduces the training time compared to other approaches. We further show that our model predicts the RLT with a maximum error of two months for 80% of the forest pixels that die within one year from the acquisition date of the Sentinel-2 image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.