The Large Hadron–Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron–proton and proton–proton operations. This report represents an update to the LHeC’s conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton–nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron–hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.
Using the information theory approach, in both its extensive and nonextensive versions, we estimate the inelasticity parameter K of hadronic reactions together with its distribution and energy dependence from pp and pp data. We find that the inelasticity remains essentially constant in energy except for a variation around Kϳ0.5, as was originally expected.
The quark gluon plasma which has been observed at RHIC is a strongly interacting system and has been called sQGP. This is a system at high temperatures and almost zero baryon chemical potential. A similar system with high chemical potential and almost zero temperature may exist in the core of compact stars. Most likely it is also a strongly interacting system. The strong interactions may be partly due to non-perturbative effects, which survive after the deconfinement transition and which can be related with the non-vanishing gluon condensates in the sQGP. In this work, starting from the QCD Lagrangian we perform a gluon field decomposition in low ("soft") and high ("hard") momentum components, we make a mean field approximation for the hard gluons and take the matrix elements of the soft gluon fields in the plasma. The latter are related to the condensates of dimension two and four. With these approximations we derive an analytical expression for the equation of state, which is compared to the MIT bag model one. The effect of the condensates is to soften the equation of state whereas the hard gluons significantly increase the energy density and the pressure.
Assuming that the nucleus can be treated as a perfect fluid we study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. The KdV equation is obtained from the Euler and continuity equations in nonrelativistic hydrodynamics. The existence of these solitons depends on the nuclear equation of state, which, in our approach, comes from well known relativistic mean field models. We reexamine early works on nuclear solitons, replacing the old equations of state by new ones, based on QHD and on its variants. Our analysis suggests that KdV solitons may indeed be formed in the nucleus with a width which, in some cases, can be smaller than one fermi.Comment: 15 pages, 1 figur
We present an overview of information theory approach (both in its extensive and nonextensive versions) applied to high energy multiparticle production processes. It will be illustrated by analysis of single particle distributions measured in proton-proton, proton-antiproton and nuclear collisions. We shall demonstrate the particular role played by the nonextensivity parameter q in such analysis as summarizing our knowledge on the fluctuations existed in hadronizing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.