-In this work, forced convection heat transfer past a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 6 was investigated for Reynolds numbers of 20-200 and a Prandtl number of 0.7. The numerical calculations are carried out by using a finite-volume method based commercial computational fluid dynamics solver FLUENT. The successive changes in the flow pattern are studied as a function of the rotation rate. Suppression of vortex shedding occurs as the rotation rate increases (α > 2). A second kind of instability appears for higher rotation speed where a series of counter-clockwise vortices is shed in the upper shear layer. The rotation attenuates the secondary instability and increases the critical Reynolds number for the appearance of this instability. In addition, time-averaged (lift and drag coefficients and Nusselt number) results were obtained and compared with the literature data. A good agreement was obtained for both the local and averaged values.
In this work, steady flow-field and heat transfer through a copper-water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds num- * Corresponding Author.
In this work, steady flow-field and heat transfer through a copper–water nanofluid around a circular cylinder, under the influence of both the standard thermal boundary conditions i.e. uniform heat flux (UHF) and constant wall temperature (CWT) was investigated numerically by using a finite-volume method for Reynolds numbers of 10 to 40. Furthermore, the range of nanoparticle volume fractions (φ) considered is 0 ≤ φ ≤ 5%. The variation of the local and the average Nusselt numbers with Reynolds number, and volume fractions are presented for the range of conditions. The average Nusselt number is found to increase with increasing the nanoparticle volume fractions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.