BackgroundExoskeletons for lower and upper extremities have been introduced in neurorehabilitation because they can guide the patient’s limb following its anatomy, covering many degrees of freedom and most of its natural workspace, and allowing the control of the articular joints. The aims of this study were to evaluate the possible use of a novel exoskeleton, the Arm Light Exoskeleton (ALEx), for robot-aided neurorehabilitation and to investigate the effects of some rehabilitative strategies adopted in robot-assisted training.MethodsWe studied movement execution and muscle activities of 16 upper limb muscles in six healthy subjects, focusing on end-effector and joint kinematics, muscle synergies, and spinal maps. The subjects performed three dimensional point-to-point reaching movements, without and with the exoskeleton in different assistive modalities and control strategies.ResultsThe results showed that ALEx supported the upper limb in all modalities and control strategies: it reduced the muscular activity of the shoulder’s abductors and it increased the activity of the elbow flexors. The different assistive modalities favored kinematics and muscle coordination similar to natural movements, but the muscle activity during the movements assisted by the exoskeleton was reduced with respect to the movements actively performed by the subjects. Moreover, natural trajectories recorded from the movements actively performed by the subjects seemed to promote an activity of muscles and spinal circuitries more similar to the natural one.ConclusionsThe preliminary analysis on healthy subjects supported the use of ALEx for post-stroke upper limb robotic assisted rehabilitation, and it provided clues on the effects of different rehabilitative strategies on movement and muscle coordination.
The control of exploratory and manipulative procedures in Teleoperation and Virtual Environments requires the availability of adequate advanced interfaces capable not only of recording the movements of the human hands and arms, but also of replicating sensations of contact and collisions. In this paper the problem of replicating external forces acting against the remote/virtual a r m is addressed. The design of an arm exoskeleton system developed an our laboratory is presented. The exoskeleton consists of a 7 actuated and sensorized DOF mechanical structure wrapping up completely the human arm and directly supported by the shoulders and the trunk of the human operator. Emphasis is given t o the implemented control procedures and t o the description of the transputer-based control architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.