In this paper, we propose a comprehensive framework for performance analysis of multi-hop multi-branch wireless communication systems over Log-Normal fading channels. The framework allows to estimate the performance of Amplify and Forward (AF) relay methods for both Channel State Information (CSI-) assisted relays, and fixed-gain relays. In particular, the contribution of this paper is twofold: i) first of all, by relying on the Gauss Quadrature Rule (GQR) representation of the Moment Generation Function (MGF) for a Log-Normal distribution, we develop accurate formulas for important performance indexes whose accuracy can be estimated a priori and just depends on GQR numerical integration errors; ii) then, in order to simplify the computational burden of the former framework for some system setups, we propose various approximations, which are based on the Improved Schwartz-Yeh (I-SY) method. We show with numerical and simulation results that the proposed approximations provide a good trade-off between accuracy and complexity for both Selection Combining (SC) and Maximal Ratio Combining (MRC) cooperative diversity methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.