Aims Several the use of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) for patients at high/very high cardiovascular risk who are inadequately treated with maximally tolerated lipid-lowering therapies (LLTs). Objectives We assessed the effectiveness and safety of the PCSK9i alirocumab and evolocumab in a single-center clinical practice for up to 68 weeks. Methods In this prospective, open-label study conducted in Germany, 635 enrolled patients were treated with alirocumab [75 or 150 mg every 2 weeks (Q2W)] or evolocumab (140 mg Q2W) according to European Society of Cardiology/European Atherosclerosis Society guidelines (low-density lipoprotein cholesterol [LDL-C] > 1.81/2.59 mmol/L (70/100 mg/dL), depending on cardiovascular risk]. Investigators were able to adjust LLTs, including PCSK9i, according to their own clinical judgment. The primary effectiveness endpoint was LDL-C reduction from baseline to week 68. Results At baseline, approximately 50% of patients were statin intolerant, and approximately 90% reported a history of cardiovascular disease. LDL-C reductions remained generally unchanged from weeks 4 to 68 in each treatment group. At week 68, LDL-C mean percentage changes from baseline were − 41.7% (alirocumab 75 mg Q2W), − 53.7% (alirocumab 150 mg Q2W), and − 54.1% (evolocumab 140 mg Q2W). LDL-C reduction was 7.1% greater in patients receiving statins than in those not receiving statins because of statin intolerance ( P < 0.0001). PCSK9i consistently improved levels of other lipoproteins throughout. Overall, 47.1% of patients reported adverse events at week 68. Conclusions Consistent with clinical trial findings, alirocumab and evolocumab improved lipid levels in a real-world setting in patients with high baseline LDL-C levels despite receiving maximally tolerated LLTs. PCSK9i were generally well-tolerated. Electronic supplementary material The online version of this article (10.1007/s40256-020-00411-3) contains supplementary material, which is available to authorized users.
sterols (all P > 0.05). Summing up, circulating PCSK9 is increased by cholesterol synthesis and absorption inhibitors. Increased PCSK9 expression may partly explain the strong reductions of LDL-cholesterol achieved with PCSK9-antibodies after such pretreatment. On the other hand, treatment with PCSK9-antibodies does not significantly change the balance between cholesterol synthesis and absorption.
Aims Lipoprotein (a) [Lp(a)] is a lipoprotein species causatively associated with atherosclerosis. Unlike statins, PCSK9 inhibitors (PCSK9i) reduce Lp(a), but this reduction is highly variable. Levels of Lp(a) are chiefly governed by the size of its signature protein, apolipoprotein (a) [apo(a)]. Whether this parameter determines some of the reduction in Lp(a) induced by PCSK9i remains unknown. We aimed to investigate if the Lp(a) lowering efficacy of PCSK9i is modulated by the size of apo(a), which is genetically determined by the variable number of KIV domains present on that protein. Methods and Results The levels of Lp(a) and the size of apo(a) were assessed in plasma samples from 268 patients before and after treatment with PCSK9i. Patients were recruited at the Outpatient Lipid Clinic of the Charité Hospital (Berlin) between 2015 and 2020. They were hypercholesterolemic at very high CVD risk with LDL-cholesterol levels above therapeutic targets despite maximally tolerated lipid-lowering therapy. Patients received either Alirocumab (75 or 150 mg) or Evolocumab (140 mg) every 2 weeks. Apo(a), apoB100, and apoE concentrations as well as apoE major isoforms were determined by liquid chromatography high-resolution mass spectrometry. Apo(a) isoforms sizes were determined by Western Blot. PCSK9i sharply reduced LDL-cholesterol (-57%), apoB100 (-47%) and Lp(a) (-36%). There was a positive correlation between the size of apo(a) and the relative reduction in Lp(a) induced by PCSK9i (r = 0.363, p = 0.0001). The strength of this association remained unaltered after adjustment for baseline Lp(a) levels and all other potential confounding factors. In patients with two detectable apo(a) isoforms, there was also a positive correlation between the size of apo(a) and the reduction in Lp(a), separately for the smaller (r = 0.350, p = 0.0001) and larger (r = 0.324, p = 0.0003) isoforms. The relative contribution of the larger isoform to the total concentration of apo(a) was reduced from 29% to 15% (p < 0.0001). Conclusions The size of apo(a) is an independent determinant of the response to PCSK9i. Each additional kringle domain is associated with a 3% additional reduction in Lp(a). This explains in part the variable efficacy of PCSK9i and allows to identify patients who will benefit most from these therapies in terms of Lp(a) lowering. TRANSLATIONAL PERSPECTIVE Unlike statins, PCSK9 inhibitors reduce the circulating levels of the highly atherogenic Lipoprotein (a). The underlying mechanism remains a matter of considerable debate. The size of apo(a), the signature protein of Lp(a), is extremely variable (300 to more than 800 kDa) and depends on its number of kringle domains. We now show that each increase in apo(a) size by one kringle domain is associated with a 3% additional reduction in Lp(a) following PCSK9i treatment and that apo(a) size polymorphism is an independent predictor of the reduction in Lp(a) induced by these drugs. In an era of personalized medicine, this allows to identify patients who will benefit most from PCSK9i in terms of Lp(a) lowering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.