A combined theoretical and experimental investigation has been undertaken to determine optimum conditions for achieving rapid cooling of H2 clusters in nozzle-beam expansions with the goal of producing superfluid H2 clusters. Theory predicts that a temperature less than 6.6 K, well below the 13.8 K triple-point temperature of p-H2, is required. Terminal specific enthalpies of clusters are determined experimentally from terminal velocities of clusters measured using the time-of-flight technique. The results are interpreted in the context of isothermal and adiabatic spinodals for p-H2 constructed using thermodynamic methods and a van der Waals equation-of-state model. The lowest terminal enthalpies are achieved in expansions starting from supercritical source conditions and crossing the binodal curve of the phase diagram with densities far to the liquid side of the critical point. In this case the clusters are formed via relatively late fragmentation of metastable liquid H2. These clusters are expected to be liquid and, at the point in the expansion at which collisions cease, to have temperatures of about 9 K. Before arriving at the detector they are cooled further by evaporation to temperatures between 4 and 5 K. Further experiments are needed to determine if these clusters are superfluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.