The synthesis of three novel prodrugs, 4-[bis[2-(mesyloxy)ethyl]amino]benzoyl-L-glutamic acid (7), 4-[(2-chloroethyl)[2-(mesyloxy)ethyl]amino]benzoyl-L-glutamic acid (8), and 4-[bis(2-chloroethyl)amino]benzoyl-L-glutamic acid (9), for use as anticancer agents, is described here. Each is a bifunctional alkylating agent in which the activating effect of the ionized carboxyl function is masked through an amide bond to the glutamic acid residue. These relatively inactive prodrugs are designed to be activated to their corresponding nitrogen alkylating agents (10, 11, and 12, respectively) at a tumor site by prior administration of a monoclonal antibody conjugated to the bacterial enzyme carboxypeptidase G2 (CPG2). The viability of two different tumor cell lines was monitored with each prodrug in the presence of CPG2. All three compounds showed substantial prodrug activity--with conversion to the corresponding active drug leading to greatly increased cytotoxicity.
Ellipticine derivatives have potential as anticancer drugs. Their clinical use has been limited, however, by poor solubility and host toxicity. As N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-anticancer conjugates are showing promise in early clinical trials, a series of novel HPMA copolymer conjugates have been prepared containing the 6-(3-aminopropyl)-ellipticine derivative (APE, NSC176328). Drug was linked to the polymer via GFLG or GG peptide side chains. To optimize biological behavior, HPMA copolymer-GFLG-APE conjugates with different drug loading (total APE: 2.3-7% w/w; free APE: <0.1% w/w) were synthesized. Conjugation of APE to HPMA copolymers considerably increased its aqueous solubility (>10-fold). HPMA copolymer-GG-APE did not liberate drug in the presence of isolated lysosomal enzymes (tritosomes), but HPMA copolymer-GFLG-APE released APE to a maximum of 60% after 5 h. The rate of drug release was influenced by drug loading; lower loading led to greater release. Whereas free APE (35 microg/mL) caused significant hemolysis (50% after 1 h), HPMA copolymer-APE conjugates were not hemolytic up to 300 microg/mL (APE-equiv). As would be expected from its cellular pharmacokinetics, HPMA copolymer-GFLG-APE was >75 times less cytotoxic than free drug (IC(50) approximately 0.4 microg/mL) against B16F10 melanoma in vitro. However, in vivo when tested in mice bearing s.c. B16F10 melanoma, HPMA copolymer-GFLG-APE (1-10 mg/kg single dose, APE-equiv) given i.p. was somewhat more active (highest T/C value of 143%) than free APE (1 mg/kg) (T/C =127%). HPMA copolymer-APE conjugates warrant further evaluation as potential anticancer agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.