Sorption of elements like Cs on clay is one of the principal processes delaying their release from deep repositories of nuclear wastes into the environment. The sorption processes taking place between non-purified natural clay material (bentonite) and synthetic groundwater (containing Ca, Mg, Na, K and carbonates) were therefore studied experimentally and modelled for Cs to determine whether thermodynamic computer codes capable of predicting the behaviour of this element in natural systems might be developed. The model used, based on the properties of a pure montmorillonite phase, incorporates the surface reactions for natural major ions and sorbing cations but does not have any adjustable parameters. The weight of each parameters used in the model is assessed. Surface reactions are classified as either major or minor, and a simplified model of Cs sorption that considers only the major processes is proposed. This simplified model might correspond to the less sophisticated thermodynamic model included in coupled geochemistry-transport models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.