Crop output is directly impacted by plant infections (with fungi as the major pathogen), making accurate diagnosis of these threats crucial. Developing technology and multidisciplinary approaches are turning to genomic analyses in addition to traditional culture methods in diagnosing fungal plant diseases. The metagenomic next-generation sequencing (mNGS) method is preferred for genotyping identification of organisms, identification at the species level, illumination of metabolic pathways, and determination of microbiota. Moreover, the data obtained so far show that this new approach shows promise as an emerging new trend in fungal disease detection. Another approach covered by mNGS technologies, known as metabarcoding, enables use of specific markers specific to a genetic region and allows for genotypic identification by facilitating the sequencing of certain regions. Although the core concept of mNGS remains constant across applications, the specific sequencing methods and bioinformatics tools used to analyze the data do differ. In this review, we focus on how mNGS technology, including metabarcoding, is applied in fungal pathogenesis and its promising developments for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.